IEEE Int. Conf. on Systems, Man and Cybernetics, Beijing/China; Obtober 1996

Deadlock Detection in a Distributed Implementation

of a Visualization System for Medical Measurement Signals

G. Lindner*

Physikalisch-Technische Bundesanstalt

ABSTRACT

In this paper we apply the methods proposed in [5],
[7] for detecting anomalies in existing executable
INMOS C [1] code for a parallel program using
static and dynamic analyses of Petri nets. Our tar-
get architecture on which the application program
is running is a transputer network. The algorithmic
translation of the INMOS C program into hierarchi-
cal place/transition nets which preserves both con-
trol and message flow is performed by a Petri net
generator. Every implemented process is converted
into an equivalent net. After this, the net parts gen-
erated are visualized and linked, and supplements
are added, using a powerful graphical Petri net ed-
itor. Hierarchical methods are furnished, e.g. func-
tion calls are levelled down to subnets, and com-
munication interface objects are highlighted. Every
net object in the graphical representation is refer-
enced with its counterpart in the source code so that
error localization is possible. In the next processing
step, the output capabilities of the Petri net editor
are used to produce several input files for analyzing
tools. Finally, the process nets investigated sepa-
rately are brought together by merging the com-
munication interfaces into one whole top level net.
Here, a renewed analysis is performed.

Index Terms: Transputer network, visualiza-
tion system, processes, Petri net generator,
reachability graph, analysis.

1. INTRODUCTION

The program under investigation is used at
the PTB laboratories at the ” Hospital Ben-

* Institut Berlin, D-10587 Berlin,
glindner@chbrb.berlin.ptb.de

t Department of Computer Science, P.O.Box 101344,
D-03013 Cottbus, Germany, mh@informatik.tu-cottbus.de,
tk@informatik.tu-cottbus.de

Germany,

M. Heiner, T. Kobienia'
Technical University of Cottbus

jamin Franklin” in Berlin to visualize medical data
(e.g. ECG, EEG, MCG) on-line in different se-
lective graphics modes [13]. Our program was de-
veloped to read continuously data from the multi-
channel acquisition system under stringent real-
time conditions. A great number of processing steps
is performed (e.g. calculating of mean values, fil-
tering and interpolation algorithm). After prepro-
cessing on processor pipes, the computed data are
displayed on two big monitors. One monitor dis-
plays an overview of all channels and a status win-
dow, while the other shows a reference channel and
a special contour plot. Details of the hybrid tar-
get, architecture used for the program are shown in
figure 1. The processing nodes processing0 and pro-
cessingl are PowerPC601' high performance nodes,
and all other nodes are T805.

Owing to their links, transputers may be connected
into a great number of configurations, depending
on the given application. They form a distributed
memory architecture. The abstract programming
model which the transputers support is the Com-
municating Sequential Process (CSP) model, based
on the idea of independent parallel processes com-
municating through channels. Channels are one-
way, point-to-point communication paths allowing
processes to exchange data and to synchronize their
activities. Every process may be formed by any
number of parallel processes, so that the entire soft-
ware system can be described by a hierarchy of com-
municating parallel processes. The communication
between processes is synchronized. When data are
exchanged between two processes, the output pro-
cess does not continue before the input process has
finished its communication task and vice versa. The
software for the visualization system is written in
the INMOS C language [1], which has been devel-

IPowerPC601 is a trademark of International Business
Machines.

1/6

Deadlock Detection in a Distributed Implementation of a Visualization System for Medical Measurement Signals

oped as an extension of ANSI C. A great number
of library functions is provided for channel-based
input and output.

disk storage data_in_port

data crossing host

processing 0 processing 1

graphics 0 graphics 1

Figure 1: Processor node architecture of the appli-
cation program

2. UNPREDICTABLE PROGRAM
BEHAVIOUR

Besides the static configuration (e.g. number of
active measurement channels, sampling frequency
from data acquisition system, channel distribution
in the windows available etc.), the user has the op-
portunity to control dynamically the state of the
system by interactive keyboard commands. The
control sequences must be routed throught the net-
work against the data stream and influence the
homogeneous data transfer between the different
processing nodes. Non-reproducible system states
can occur in a stochastic manner, leading some-
times to communication deadlocks, which are based
on the message passing programming model along
synchronized channels. Then, the whole system is
stopped irreversibly. The program behaviour of-
ten critically depends on potentially unpredictable
timing of the components caused by the keyboard
commands.

2/6

3. NET-BASED QUALITATIVE
ANALYSIS

Net-based qualitative analysis is a well-known ap-
proach. It can be used both as a pedagogical aid
and as a tool for debugging and investigating the
transputer application [9]. In the following, we ap-
ply the methods proposed in [5], [7] for detecting
deadlocks in our application program. The source
code was analyzed with a view to detecting errors
in the software available, to correct it and to in-
crease its reliability. In the following, the main
components—generator, editor and analyzer—are
shortly discussed.

3.1 Generator component

In the first instance, the program is translated
into an appropriate hierarchical place/transition
net [11]. The generation basically assembles gen-
eral Petri net components for all important lan-
guage means in accordance with the syntax tree.
To generate Petri net components from the INMOS
C source code, the generator uses the following sim-
plified grammar:

process ::= function.definition.
function.definition ::=
function.header compound.statement.

compound.statement ::= ’{’statement.list’}’.
statement.list ::= statement.list ’;’ statement

| statement.
statement ::= labeled.statement

| if.statement

| switch.statement

| iteration.statement

| jump.statement

| compound.statement.

iteration.statement ::=
| while.statement
| for.statement
| do.statement.

jump.statement ::=
| break.statement
| continue.statement
| goto.statement
| return.statement.

labeled.statement ::= label@’:’statement.
Semantic actions are introduced for every grammat-
ical rule. These actions generate the Petri net com-

ponents for the INMOS C statements which can
alter the control flow (such as if, do, while and

IEEE Int. Conf. on Systems, Man and Cybernetics, Beijing/China; Obtober 1996

switch statement) or which constitute a synchron-
uous communication. The following was defined to
allow all Petri net components to be uniformly pro-
cessed:

1. every Petri net component begins with a place,

2. every Petri net component ends with a transi-
tion.

All node names in the Petri net model are con-
trolled by the appropriate Petri net components
[3], while the suffix numbers in the node names
refer to the source text line numbers. An example
of a ”while-construct” [8] is shown in figure 2.
Besides this basic functionality, further information
is produced, allowing the generated nets to be au-
tomatically laid out afterwards, and the program’s
structural complexity NAP? to be assessed.

E statement

end.while.8

Grammar:
while.statement ::=
while’(’expression’)’statement

Program’s structural complexity:
NAP(while.statement) :=
NAP(statement) * NAP (expression) + 1

Figure 2: While construct

Synchronization concept: The extended
library functions of the INMOS C language (e.g.
ChanIn, ChanInInt, ChanOut, ChanOutlInt, Proc-
SkipAlt) are of particular importance for the gen-
eration of synchronization skeletons. The Petri net
generator in use [8] produce net representations of
the reduced or nonreduced control structure of a
given sequential process. In the reduced operation
mode, the Petri net model is generated for all se-
quential program parts, which include process in-
teraction primitives mentioned above®. The basic
construct of synchronous communication is shown

2NAP: Number of Acyclic Paths

3That means, that any sequential program parts, which
do not include process interaction primitives, are reduced to
one transition.

in figure 3. In general, every communication in any
INMOS C program is represented by two unique
places in the corresponding net. The places may
be thought of as communication channels between
potential ”senders” and "receivers”. The place
Psend.o 1S referred to as a sending place. It holds
a token if the sending process fires the transition
ChanOutl showing that the sender starts waiting
for synchronous communication. Firing the tran-
sition Chanln represents that the control of pro-
cess2 passes the receive statement. After the re-
ceive statement ends, place p.cc.1 enables the tran-
sition ChanOwut2. This means that the control of
processl may exit from the suspended state. These
places generated by the translation of the extended
library functions are referred to as communication
places. They are connected with communication
arcs. A communication arc is not considered to be
part of any process subnet. All noncommunication
arcs are refered to as sequential arcs.

Properties of the generated nets: If we
disregard any communication between processes, a
distributed program can be modeled by a set of
state machines, one state machine per process. A
state machine is a Petri net such that each transi-
tion t has exactly one input place and exactly one
output place, i.e., |*t| = |t*| = 1 for all t € T*. Our
distributed programs are characterized by many
communications between the processes. The pro-
cess subnets are merged on its communication in-
terfaces to form the top level net. A top level net
is composed of strongly connected Petri net pro-
cess subnets possibly interconnected with commu-
nication arcs and places making the total Petri net
strongly connected®. Additionally, it is worth not-
ing that the whole net is 1-bounded (safe) per con-
struction. The initial marking M, represents the
situation in which a program modeled by the net is
ready to start execution.

3.2 Editor component

The graphical Petri net editor [4] is used to visual-
ize the net parts generated (and to add any sup-
plements). Figure 4 shows a simple example of
one such process. Hierarchical methods are used,
e.g. function calls are levelled down to subnets.
The next processing step brings the separate pro-
cess nets together (linking) merging them at the

4Here, *t (t*) denotes the set of input (output) places of
transition ¢.

5A net is strongly connected if there is a directed path
from any node (place, transition) to any other node.

3/6

Deadlock Detection in a Distributed Implementation of a Visualization System for Medical Measurement Signals

process 1 process 2
ChanOutl
suspended :I Chanin
ChanOut2
p-send.0
ChanOut I:D :I Chanln
p-ack.1

O O

ChaninOut

Figure 3: Synchronous communication

communication interfaces to form a whole top level
net. Figure 5 shows the half part of our symmet-
rical composed top level net. The transition send?!
in figure 5 is a coarse transition and represents the
whole sequential structure of the sendl process.

3.3 Analyzing component

Finally, the output capabilities of the Petri net ed-
itor produce an input file for the analyzing tool
INA [12]. Significant properties, such as liveness,
absence of deadlocks, safety and boundedness are
evaluated. There is no commonly accepted defi-
nition of a deadlock in a distributed environment
[10]. In our context, the term deadlock describes a
system state, where no transition is enabled.

The analysis is done bottom-up in a step-wise man-
ner. At first, all processes are analyzed separately.

4/6

° chaninint.277 . otrl_chan2.0
O ctrl_chan2.1

. directchanoutint.278 . ctrl_chan1.0

chaninint.277

directchanoutint.278 O ctrl_chan1.1

. repeat.296

. begin.repeat.297

. sync.298

. sync.298

. repeat.301
. begin.repeat.302

. directchaninint.30: .

data_chanl.0

irectchaninint.303
directchanini 3Odata_chanl.l
(bl 314

. next.repeat.314 .

end.repeat.314

chanout.315 () data_chan2.0

chanout.315 O data_chan2.1

. while.317
. next.repeat.317 .

end.repeat.317

end.program.319

. end.program.319

Figure 4: Reduced sendl process net

IEEE Int. Conf. on Systems, Man and Cybernetics, Beijing/China; Obtober 1996

Afterwards, the top level net is analyzed step-wise
starting with a smaller subnet (2-3 processes) which
is extended step by step by further processes until
the complete process system net has been composed
and analyzed.

4. SYNCHRONIZATION SKELETON
FROM THE APPLICATION
PROGRAM

To investigate all processes datain, send0, sendl,
processingl, processingl, graphics, and host, the
processing cycle

1. generation of the place/transition net

2. postprocessing in the editing environment

3. use of the analyzing tool

is iteratively used.

token type: black (for place/transition nets)
time option: no times

firing rule: normal

priorities : not to be used

strategy : single transitions

line length: 80

Table 1: Analyzing tool presettings

process generated | no. of net | no. of

net name states objects source
(p,t) lines

datain 14 14,19 170
send(20 20, 20 96
sendl 12 12, 14 64
processing() 22 22,18 204
processingl 31 31,27 239
graphics0 131 131, 151 733
graphicsl1 91 91, 112 081
host 56 56 , 62 455

Table 2: Analyzing results of the process subnets

In error free case, the analysis tool [12] presettings
as shown in table 1 lead to the following proper-
ties of one isolated process: ”The net is not stati-
cally conflict-free, ordinary, homogenous, bounded,
a state machine, has no dead transitions at the
initial marking, has no dead reachable states, is
live and safe and reversible (resetable)”. Here, we
are able to use the exhaustive search by construct-
ing the complete reachability tree (state graph).

Such analysis has an exponential time complexity
in terms of the number of concurrent processes.
In table 2 details from the analyzing sessions are
shown. When the analysis of the individual nets
has proved that the nets are free from anomalies,
these are merged at their communication interfaces
and the analysis of the overall net is carried out.

To handle the complex state space at the top level,
we use the reduced reachability graph construction
by the stubborn set method which allows us to
prove at least the freedom of dead states. More-
over, the 1-boundedness can be shown efficiently by
proving that the net is covered by place-invariants.
More complicated properties of the total net could
not be proved by classical Petri net analysis tech-
niques because of the huge size of the complete
reachability graph. Therefore® we started an ad-
ditional analysis step based on (different versions
of) temporal logics by the help of the analysis tools
PEP [2] and PROD [14].

5. CONCLUSIONS

In this paper, we have described an approach to
increase the reliability of existing transputer soft-
ware. First, an INMOS C program is translated
into a Petri net, which properly models the com-
munication patterns and control flow of the source
program. Then, the generated net is analyzed us-
ing both structural and dynamic Petri net analysis
techniques. Ongoing investigations deal with im-
proved analysis techniques based on temporal log-
ics.

REFERENCES

[1] ANSI C Language and Libraray Reference
Manual, INMOS document number: 72 tds
37401 edition.

[2] E. Best and B. Grahlmann. PEP-Programming
environment based on Petri nets, documenta-
tion and user guide. University Hildesheim,
Dep. of CS, November 1995.

[3] G. Crichy. Implementation of a petri net gener-
ator for INMOS C programs. Technical report,
GMD/FIRST, February 1992.

[4] G. Czichy. Design and implementation of an
graphical editor for hierarchical petri net mod-

Sencouraged by the positive results of another case study
published in [6]

5/6

6/6

Deadlock Detection in a Distributed Implementation of a Visualization System for Medical Measurement Signals

data_in

chan1.0

strl_chan2.0

data_chan2Q

E processingl

. . data_chan3.1

data_chan3.0

graphics0

ctrl_chan4.®

Figure 5: The half of the top level net

[5]

[6]

[7]

(8]

[10]

els. Master’s thesis, Technical University Dres-
den and GMD/FIRST, June 1993.

M. Heiner. Petri net based software valida-
tions, prospects and limitations. Technical
report, ICSI-TR-92-022, Berkeley/CA, March
1992.

M. Heiner and P. Deussen. Petri net based
qualitative analysis - a case study. Technical
report, Technical University Cottbus, Decem-
ber 1995.

M. Heiner, G. Ventre, and D. Wikarski. A
petri net based methodology to integrate qual-
itative and quantitative analysis. In Informa-

tion and Software technology, volume 36, pages
435-441, 1994.

T. Kobienia. Extended petri net generator for
INMOS C programs. Technical report, Tech-
nical University Cottbus, February 1996.

G. Lindner. The application of formal descrip-
tion methods to support the program devel-
opment of a real-time visualization system for
medical measurement signals based on trans-
puters. In Design of Complex Automatisation
Systems, pages 509-519. Technical University
Braunschweig, June 1995.

T. Murata, B. Shenker, and S. M. Shatz. De-
tecting of ada static deadlocks using petri net
invariants. In IEEE Transactions on Software
Engineering, volume 15, pages 314-325. IEEE,
March 1989.

H. P. Starke. Analyse wvon Petri-Netz-
Modellen. B. G: Teubner, 1990.

H. P. Starke.
1992.

Ina - integrated net analyzer,

D. Stollfuss and G. Lindner. A real-time vi-
sualization system for medical measurement
signals based on transputers. Physikalisch-

Technische Bundesanstalt Annual Report,
pages 281-282, 1993.

K. Varpaaniemi, J.Halme, K.Hiekkanen, and
T.Pyssysalo. Prod reference manual. Technical
Report 13, Helsinki University of Technology,
Digital Systems Lab., August 1995. Series B.

