
Proc. 3rd Workshop on Discrete Event Systems (WoDES ’96), Edingburgh/UK, August 1996, pp. 308-313.

1 Introduction 1/6

© 1996 IEE, WoDES 96 - Edinburgh UK,
proc. of the workshop on Discrete Event Systems

Abstract. The development of provably error-free
concurrent systems is still a challenge of system
engineering. Modelling and analysis of concurrent
systems by means of Petri nets is one of the well-
known approaches using formal methods. To evaluate
the reached practicability degree of available methods
and tools to at least medium-sized systems, the authors
demonstrate the step-wise development and validation
of the control software of a reactive system [13].
Strong emphasis has been laid on automation of the
analyses to be done. This paper provides a brief outline
of the authors’ work, stressing especially analysis
experience.

Keywords: Parallel software/system engineering,
static analysis, Petri nets, reactive system, reliability.

1 Introduction
The development of provably error-free concurrent
systems is still a challenge of system engineering.
Modelling and analysis of concurrent systems by means
of Petri nets is one of the well-known approaches using
formal methods. To evaluate the reached practicability
degree of available methods and tools to at least
medium-sized systems, the authors demonstrate in [13]
the step-wise development and validation of the control
software of a reactive system - a (really existing)
production cell in a metal-processing plant [14]. In this
paper, a brief outline of our work is presented, updated
by recent analysis results.

The validation of qualitative properties comprises two
steps. At first, the context checking of general semantic
properties is done by a suitable combination of static and
dynamic analysis techniques, mainly of “classical” Petri
net theory. Afterwards, the verification of well-defined
special semantic properties, especially safety properties,
given by a separate specification of the required
functionality is performed. Strong emphasis has been
laid on automation of the analyses to be done.

The case study has been designed to evaluate different
kinds of software development methods. The objective
is to develop verified control software, taking into
account various safety conditions and performance
constraints. This case study has been already investi-
gated by a lot of different formal methods [14], but up to
now Petri nets have been used only as supplementing
description. This paper provides the possibility to
consider also a strongly Petri net-oriented approach to
compare advantages and drawbacks inherent to different
formal methods.

This paper is organized as follows. Section 2 gives a
short overview of the Petri net based framework of
software validation and introduces some basic termi-
nology. The essential points of the discussed case study
concerning the task description and the modelling of the
controller components for the production cell are
presented in section 3. Section 4 gives a classification of
properties of reactive systems derived from our
experience, and related analysis methods are discussed.
A short overview of the main analysis results obtained
by now is presented in section 5. Finally, section 6
comprises an outlook on further work in preparation and
open questions, which have to be solved in order to
improve the Petri net based validation.

2 Petri net based framework of
software validation

In our case study, Petri nets are constructed right from
the beginning to model and prototype the concurrent
aspects of the system under development in order to be
able to predict, at the chosen abstraction level, the
possible behaviour of the system by intermediate
validation steps. After being satisfied with the analysis
result obtained, the executable code (of the communi-
cation skeleton) has been generated based on [18].

Generally spoken, validation tries to minimize the
presence of faults in the operation phase by analytical
and (as far as possible) computer-aided methods in the
pre-operation phase.

Concerning the type of properties to be validated, two
classes of qualitative validation techniques can be distin-
guished:

Context checking deals with general qualitative

PETRI NET BASED DESIGN AND ANALYSIS OF REACTIVE SYSTEMS

Monika Heiner, Peter Deussen

Brandenburg Technical University of Cottbus
Department of Computer Science

Postbox 101344
D-03013 Cottbus

Germany
mh@informatik.tu-cottbus.de, pd@informatik.tu-cottbus.de

Phone: (+ 49 - 355) 69 - 3885
Fax: (+ 49 - 355) 69 - 3830

2/6 3 Case study

Heiner, Deussen: Petri Net Based Design and Analysis of Reactive Systems

properties like freedom from data or control flow
anomalies which must be valid in any system
independent of its special semantics (for that reason, it is
called in the following general analysis). These
properties are generally accepted or project-oriented
consistency conditions of the static semantics of any
program structure like boundedness and liveness.

Verification aims at special qualitative properties like
functionality or robustness which are determined by the
intended special semantics of the system under devel-
opment (to underline this fact, it is called in the
following special analysis).

Evidently, a successful general analysis is a prerequisite
to prove that some special qualitative properties will be
fulfilled under any circumstances. So, the validation of
qualitative properties can be divided into two consec-
utive steps, which supplement each other. First, the
context checking of general semantic properties (general
analysis) has to be done by a suitable combination of
static and dynamic analysis techniques of Petri net
theory.

Afterwards, the verification of well-defined special
semantic properties (special analysis) given by a
separate specification of the required functionality has to
be performed. Especially for the second step it is very
useful to supplement the power of “classical” Petri net
theory by the model checking approach, using temporal
logic as a flexible query language for asking questions
about the (complete/reduced) set of reachable states.

All static analysis techniques have in common that they
avoid the construction of the reachability graph.
Reduction and structural analysis (e.g. the deadlock trap
property) correspond mainly to general analysis (of (un-)
boundedness or (un-) liveness). The invariant analysis
supports general analysis (if the net is covered with
semipositive place invariants) as well as special analysis.
In the latter case, program invariants are proven by
showing the existence of related net invariants. So first,
suitable program invariants have to be hypothesized, and
second, the related net invariants have to be found from
the (in general non-minimal) basis of invariants
provided by a net analysis tool. Generally, this is hardly
manageable for larger systems (larger concerning the
size of states).

Dynamic analysis techniques have to be used if the
static analysis efforts were not successful, or if
properties are wanted which cannot be analyzed stati-
cally at all (e.g. reversibility, livelock freedom, dynamic
conflicts - especially those conflicts, where communi-
cation places are involved, firing of facts, etc.). Due to
the well-known effect of state explosion, lazy
construction methods to consider only reduced state
spaces have been elaborated. E.g. the stubborn set
reduced reachability graph is usually much smaller than
the complete one, but exhibits all dead states, if any.

In model checking, the reachability graph (in different
versions) of a Petri net is interpreted as a model of a set
of formulae given in some formal languages. In the
recent years, temporal logics are broadly accepted as a

suitable formalism to express properties of reactive
systems.

The tool kit used consists of the following components:
PED [16], INA [19], PROD [24], and PEP [2].

The graphical Petri net editor PED supports basically
the construction of hierarchical place/transition nets.
Complementary, all necessary attributes of those net
types can be assigned, which are analyzable by INA.

INA provides a broad offer of analysis methods of
“classical” Petri net theory, e.g. static analysis
techniques like testing the deadlock trap property or
state machine coverability, invariant analysis, compu-
tation of symmetries, structural reduction, and dynamic
analysis techniques like reachability/coverability graph
generation and stubborn set reduced reachability graph
construction.

The reachability graph generator PROD provides a
query language which is strong enough to express a fully
version of propositional Computational Tree Logic
(CTL) [1]. Unfortunately, the evaluation of CTL
formulae requires the previous construction of the
complete state space of a Petri net which is unaccaptable
at least for medium sized systems (state explosion
problem).

Another type of temporal logics provided by PROD is a
version of Linear Time Temporal Logic (LTL) (see e. g.
[6]). LTL formulae not containing the nexttime operator
can be checked very efficiently (on-the-fly) by
construction of a reduced state space which is in so-
called CFFD-equivalence to the complete state space
using the stubborn set method (see [5, 9, 21, 22, 23]).

Instead of computing a complete or reduced version of
the reachability graph, the model checking component of
the PEP tool is based on the construction of a finite
prefix of an unfolding of a Petri net, which does not
contain interleavings of concurrent transition occur-
rences [7, 8, 15]. However, this method works only for
1-bounded nets. PEP provides model checking for a
rather restricted version of CTL containing only the
temporal operators AG and EF. But, generation of the
finite prefix as well as model checking work extraor-
dinary fast.

3 Case study
The focus of our investigations builds a (really existing)
industrial facility [14]. This production cell comprises
six physical components: two conveyor belts, a rotatable
robot equipped with two extendable arms, an elevating
rotatable table, a press, and a travelling crane. The
machines are organized in a (closed) pipeline. Their
common goal is the transport and transformation of
metal plates. For details the reader is referred to [14]. In
this paper, also a list of safety and progress requirements
can be found which are to obey by the implementation of
a control program.

We have developed and analyzed the control software in
two abstraction levels. The more abstract cooperation

Proc. 3rd Workshop on Discrete Event Systems (WoDES ’96), Edingburgh/UK, August 1996, pp. 308-313.

4 Properties of reactive systems 3/6

model describes the synchronization of the machine
controllers. This model has been influenced essentially
by [3]. The construction of the model was done
stepwise. At first, common patterns concerning the
intended communication behaviour of the controllers for
the physical devices have been identified and modelled
as Petri nets. Then, the complete model was constructed
by composition of instances of the communication
patterns by merging the so-called communication places.
The total cooperation model consists of 51 places and 36
transitions structured into eight hierachical sheets.

After designing and analyzing successfully the cooper-
ation model, a refinement has been done which incorpo-
rates the interactions of the controllers with the interface
(actuators, sensors) of the production cell. Furthermore,
this control model comprises a Petri net description of
the environment which allows to express certain
assumptions on the behaviour of the physical devices in
response to the controllers’ actions. As before, the
construction of the model was done bottom-up: A net
structure for an elementary control procedure was
defined which involves the controller part and also the
environment part of one basic motion step of one device.
One basic step consists of the activation of some device,
receiving a certain sensor value that indicates that the
motion is completed, and the deactivation of the device.
Complex processing step controls where constructed by
the composition of elementary ones. The cooperation
model is structured into 65 sheets. It comprises 231
places and 202 transitions.

4 Properties of reactive systems
At the very first beginning, a specification of a reactive
system is given by an informal list of functionality and
safety requirements. If a compositional design method-
ology is used to build up a formal model of the required
system, the specification process may be stopped at an
arbitrary level of refinement, where complex system
components are considered to be atomic ones, and
internal details are left to the actual implementation.
Hence, the question arises whether this model is
adequate to express the required system properties. In
our case study, for instance, the cooperation model does
not contain any references to the environment.
Therefore, the influence of the system on the devices to
be controlled is only described indirectly by assumptions
on the relation between internal system states and
external states (of the environment).

Basically, two different types of system properties can
be distinguished:

1. Properties related to system design. This class of
properties consists both of general qualitative properties
like freedom of dead states, liveness of transitions, or
boundedness, and of special properties demanded by
system design like (if Petri nets are used as formal speci-
fication language) mutual exclusion of pairs of places
modelling a message/acknowledgement behaviour of
communication channels. Properties of this type can be

given in terms of system states itselves without further
concerning (implicit or explicit) assumptions on the
environment behaviour.

2. Properties related to the influence of a system on
its environment. For reactive systems, a specification
of the required functionality and safety constrains must
be given in terms of the actions of a system in response
to external events. Hence, the expressibility of those
properties depends on the existence of appropriate terms
of the environment in the formal system description.
These terms can be given either implicitly by means of
assumptions on the relations between internal system
states and external states of the environment or explicitly
by incorporating a reasonable description of the
environment itself.

In the case of control software of manufacturing
systems, a refined classification of interaction-related
safety properties can be made:

(a) Illegal states of single components. For instance,
devices may have restricted mobility. To ensure require-
ments of this type, certain system actions have to occur
fast enough in response to external events. If external
errors are observable by the control program, properties
of this type are expressible by adding appropriate error
states to the environment model. Otherwise, the system
model has to contain assumptions on execution times.

(b) Illegal combinations of single components states. For
instance, certain combinations of states of the devices
result into machine collision. In general, compositional
system design ensures that errors of this kind can be
related to internal system states and/or to states of an
external environment model. Using “classical” Petri net
based analysis techniques, properties of this type can be
verified e.g. by place invariants. In temporal logics,
these properties appear as simple safety formulae of the
logical form (in CTL, ϕ a state formula),
which are expressible both by the versions of CTL and
LTL supported by PROD and by the CTL version of
PEP.

(c) Illegal (sequences of) system actions. For instance,
an unloading action of a transport device may not occur
unless a transport motion is completed. Most of the
analyzing techniques which are supported by the tools
cited above are based on the reachability or non-reacha-
bility of (classes of) system states. Therefore, require-
ments of this type are only expressible indirectly in
terms of (sets of) system states where such unwanted
action (sequences) would be enabled. In CTL, formulae
expressing this type of properties are in general of the
form , i.e. at some state deter-
mined by ϕ, an unwanted system state determined by χ
does not occur until ψ holds. Formulae of this logical
form can be expressed in PROD’s CTL version and also
in PROD’s LTL version. But PEP’s version of CTL is
not powerful enough for this purpose.

ϕ¬()AG

ϕ A χ¬ ψU[]→()AG

Heiner, Deussen: Petri Net Based Design and Analysis of Reactive Systems

4/6 5 Summary of the main analysis results

5 Summary of the main analysis
results

Cooperation model. In general analysis, we are
basically interested in proving the general properties
boundedness and liveness. Using INA, both properties
can be decided efficiently by showing that the net under
consideration is covered by semipositive place invar-
iants and by proving the deadlock trap property, respec-
tively, because of certain structural properties of the
considered net models (marked graphs or extended
simple nets). Dead states in one discussed controller
version (arm version 2) have been found very fast by the
stubborn set reduction method. Table 1 compiles some
details on the size of the analyzed nets and the analysis
efforts done. Please note especially the impressive
reduction effect inherent in the stubborn set method. The
analyses were done on a SUN sparc station 5 with 32
MB main memory.

The reachability graph analyser PROD has been applied
to prove certain safety properties of the cooperation

model given by CTL formulae. Two major problems
have been arisen:

(a) The expressibility of certain properties. Due to the
lack of an explicit environment model, requirements,
which are given explicitly in terms of the system’s inter-
action with the environment (like sensor values), cannot
be expressed only in terms of internal system states.
Hence, the confidence in the verification depends on the
degree of assurance that the assumed relation between
internal states and the corresponding controlled
processes will be correctly realized by the final imple-
mentation of the modelled system.

(b) The time effort for model checking. Safety properties
of the general logical form (ϕ a state
formula) can be checked within an acceptable amount of
time (about a few minutes). For systems with a medium
sized state space, the time effort to validate more
complex formulae like progress properties of the form

 (ϕ, χ state formulae) is extraordinary
large (about ten hours on a SUN sparc station 20).

ϕ¬()AG

ϕ χAF→()AG

Table 1: Size of analyzed nets and analysis efforts done (cooperation model).

a) processed candidates to check the deadlock trap property
b) number of states of the stubborn reduced reachability graph Rstub
c) number of states of the complete reachability graph R
d) time effort to generate R (with coverability test)
e) time effort to generate R (without coverability test)
f) time effort to generate R

places/
transitions

Analysis (INA) Execution Times

DTPa) Rstub
b) Rc) INAd) INAe) PRODf)

controllers

table / press
with init part
without init part

13 / 9
12 / 8

(N)
28

12
8

28
24

1.5"
1.46"

1.54"
2.16"

7.96"
7.41"

crane 12 / 8 31 11 48 1.62" 2.12" 7.39"

arm
version 1
version 2
version 3

13 / 8
17 / 12
17 / 12

38
109
88

11
15
15

48
112
96

1.5"
1.73"
1.77"

3.12"
1.65"
1.88"

14.78"
24.92"
24.19"

belts 12 / 8 26 8 36 1.58" 2.23" 7.38"

composed systems

robot (arm version 3) 33/24 448 221 10,944 2190.18" 11.34" 75.6"

robot/press with
arm version 1
arm version 2
arm version 3

25 / 16
33 / 24
33 / 24

175
3.851 (N)
725

47
75
140

640
1,984
1,800

7.81"
53.23"
57.07"

3.64"
7.78"
8.12"

14.78"
24.92"
24.19"

open system 51 / 36 1145 299 77,760 86132.6" 3653.6" 1073.35"

closed system
with 1 plate
with 2 plates
with 3 plates
with 4 plates
with 5 plates

51 / 36 1140
36
72
94
98
121

864
4,776
12,102
16,362
12,144

18.58"
365.53"
2401.28"
4167.93"
2373.1"

6.07"
18.77"
87.1"
150.85"
78.6"

25.93"
56.21"
125.71"
169.15"
123.8"

5 Summary of the main analysis results 5/6

Accepted for WODES ’96, “Workshop on Discrete Event Systems”, Edingburgh, Scotland, August 1996

Control model. Again, INA and PROD were applied for
general and special analysis. For the control model, a
complete construction of it’s state space became
unacceptable. (See table 2 for a comparison of the
analysis efforts using PROD and PEP. The analyses were
done on a sparc station 20 with 64 MB main memory.) In
spite of this, boundedness is still decidable very
efficiently by showing that the net model is covered by
semipositive place invariants (again it took only a few
seconds). Due to the added environment behaviour, all
discussed net models exhibit a net structure beyond the
extended simple one. So, the deadlock trap property
could only show the freedom of dead states. The
construction of the stubborn set reduced reachability
graph is still manageable even for larger systems with
unknown size of the complete state space. So, the prove
of the deadlock freedom seems to be practicable in any
case.

It was impossible to prove liveness using INA or PROD,
because of the lack of suitable structural properties and
the size of the state space. The liveness of a transition t
can be expressed in CTL by the formula en t()EFAG

(denotes the proposition that all preconditions of
a transition t are satisfied). But this property is not
expressible in LTL and therefore not analyzable by
PROD on the fly. In LTL, only a stronger property
related to the livelock freedom of a transition can be
expressed by , and actually analyzed by
PROD’s on-the-fly verification. Unfortunately, not (but
almost) all transitions in the control model enjoy this
property. As cited above, the CTL version of PEP
contains both the operators AG and EF. Hence, liveness
is expressible in this logic. We succeeded in proving the
liveness of non-livelock-free transitions in all cases
within an negligible amount of time (less then one
second).

Safety requirements were expressed in LTL and verified
using PROD’s stubborn set based on-the-fly verification
method. A few simple safety properties were verified by
PEP. The following conclusions are worth mentioning:

(a) The existence of an environment model allows to
express both assumptions on the behaviour of physical
machines and of system properties in terms of the
influence of a system on its environment. Evidently,

en t()

G F en t()

Table 2: Size of analyzed nets and analysis efforts done (control model).

a) size of the finite prefix of the branching process (net unfolding)
b) time effort to generate the finite prefix
c) number of states of the complete reachability graph R
d) time effort to generate R
e) number of states of the stubborn reduced reachability graph Rstub using the deletion algorithm
f) time effort to generate Rstub
g) number of states of the stubborn reduced reachability graph Rstub using the incremental algorithm
h) time effort to generate Rstub

places/
transitions

PEP PROD

conditions/

eventsa) timeb) Rc) timed) Rstub
e)

timef) Rstub
g)

timeh)

controllers

crane 45/34 154/71 0.02” 256 0.78” 51 0.16” 38 0.08”

feed belt 22/16 69/34 0.01” 256 0.20” 31 0.10” 16 0.07”

table 32/24 82/37 0.01” 88 0.38” 36 0.15” 24 0.09”

arm 1/2 (version 3) 66/60 138/65 0.02” 365” 1.19” 62 0.23” 51 0.09”

press 28/20 166/81 0.02” 140 0.42” 48 0.10” 20 0.09”

deposit belt 22/16 69/34 0.01” 69 0.31” 31 0.11” 16 0.07”

composed systems

robot 124/120 3514/1752 0.02” 63,232 11.26’ 992 5.99” 205 0.21”

robot/press 140/132 1280/624 1.07” 18,344 3.10” 557 3.46” 305 0.35”

open system 198/176 2773/1348 5.15” ? ? 798 5.90” 507 0.62”

closed system
with 1 plate
with 2 plates
with 3 plates
with 4 plates
with 5 plates

231/202
690/316
1670/792
2009/960
2164/1035
1619/768

0.57”
2.63”
3.02”
3.38”
1.68”

30,952
543,480
> 1.7 Mio
> 3.1 Mio
1,657,242

7.54’
ca. 3.3 h
> 20 h
> 42 h
ca. 14 h

162
406
523
471
585

0.68”
2.53”
4.51”
4.02”
5.05”

163
456
635
678
608

0.32”
0.72”
0.95”
1.06”
0.98”

6/6 6 Final remarks

Heiner, Deussen: Petri Net Based Design and Analysis of Reactive Systems

requirements expressed in this way are comprehensible
without a deeper knowledge of the internal structure of a
system.

(b) Because of the structure of the environment model, it
is impossible to express properties related to illegal
states of single devices. A more improved model must
contain explicit error states.

(c) The stubborn set based on-the-fly verification method
has been proven to be applicable even for systems with a
larger state space. The analysis efforts were between 2
and 25 minutes for the formulae for which a model
checking were done. However, certain progress
properties like the liveness of transitions cannot be
expressed in LTL because of the lack of a quantification
on computation paths.

(d) Liveness of transitions and simple safety require-
ments can be verified very fast by PEP’s model checking
method. However, many of those system requirements
related to illegal action sequences cannot be expressed in
the restricted CTL version of PEP.

6 Final remarks
Up to now, a Petri net model to control the given
production cell has been developed which enjoys
provably a lot of valuable qualitative properties - general
as well as special ones.

Beyond that, the quantitative analysis is in preparation
using different types of time-dependent Petri Nets:
Duration Interval Nets [12] based on Interval Nets [17]
to prove the meeting of given deadlines by worst-case
evaluation, and Stochastic Nets [25] to estimate
performance measures like throughput or average
processing time.

Throughout our case study, (the rarely available and
rather restrictive) compositional approaches of Petri net
analysis have not been discussed yet. They have been
skipped in order to get a feeling for the borders of those
net/state space sizes, which are actually manageable by
available analysis tools.

Finally, the main lessons learnt concerning a suitable
tool box framework are the following.

(a) The combination of different tools (even if they
provide similar features at the very first glance) seems to
be unavoidable.

(b) We need user guidelines showing which analysis
techniques are recommendable for a given analysis
question.

(c) The check of a given system against its functionality
and/or safety requirements given by a (more or less
large) set of temporal formulae calls for distributed
evaluations in batch processing manner.

References
[1] BEN-ARI, M., PNUELI, A, MANNA, Z, The Temporal Logic of

Branching Time, Acta Inform. 20(1983), 207-226.

[2] BEST, E., GRAHLMANN, B., PEP - Programming Environment
Based on Petri Nets, Documentation and User Guide: Univ.
Hildesheim, Institut für Informatik, Nov. 1995.

[3] CASAIS, E., Eiffel; A Reusable Framework for Production Cells
Developed with an Object-oriented Programming Language, in:
Lewerentz, C., Lindner, T., ed.: Case Study “Production Cell” A
Comparative Study in Formal Software Development, FZI-
Publication 1/94, Forschungszentrum Informatik, Karlsruhe
1994, 241-256.

[4] CLARKE, E. M., EMERSON, E. A., SISTLA, A. P., Automatic
Verification of Finite-State Concurrent Systems Using Temporal
Logic Specifications, ACM Trans. on Programming Languages
and Systems 8(1986)2, 244-263.

[5] COURCOUBETIS, C., VARDI, M. Y., WOLPER, P., YANNAKAKIS,
M., Memory Efficient Algorithms for the Verification of
Temporal Properties, Formal Methods in System Design 1, 2/3
(1992), 275-288.

[6] EMERSON, E. A., Temporal and Modal Logic, in: J. v. Leeuwen,
ed.: Handbook of Theoretical Computer Science, Vol. B, Elsivier,
Amsterdam 1990, 995-1072.

[7] ENGELFRIET, J., Branching Processes of Petri Nets, Acta Inform.
25(1991), 575-591.

[8] ESPARZA, J., Model Checking Using Net Unfoldings, Science of
Computer Programming 23(1994), 151-195.

[9] GERTH, R., PELED, D., VARDI, M. Y., WOLPER, P., Simple On-
the-fly Automatic Verification of Linear Temporal Logic, in:
Proc. of the 15th International Symposium on Protocol
Specification, Testing and Verification (PSTV'95), Warsaw, 1995,
3-18.

[10] HEINER, M., Petri Net Based Software Validation, Prospects and
Limitations, ICSI-TR-92-022, Berkeley/CA, 3/1992.

[11] HEINER, M., VENTRE, G., WIKARSKI, D., A Petri Net Based
Methodology to Integrate Qualitative and Quantitative Analysis,
Information and Software Technology 36(94)7, 435-441.

[12] HEINER, M., Petri Net Based Software Dependability
Engineering, Tutorial Notes, Int. Symposium on Software
Reliability Engineering, Toulouse, Oct. 1995.

[13] HEINER, M., DEUSSEN, P., Petri Net Based Qualitative Analysis -
a Case Study, Techn. Report BTU Cottbus, I-08/1995.

[14] LEWERENTZ, C., LINDNER, T., Formal Development of Reactive
Systems - Case Study Production Cell, LNCS 891, 1995.

[15] MCMILLAN, K. L., Using Unfoldings to Avoid the State
Explosion Problem in the Verification of Asynchronous Circuits,
in: Proc. of the 4th Workshop on Computer Aided Verification,
Montreal 1992, 164-174.

[16] PED, http://www-dssz.Informatik.TU-Cottbus.De/~wwwdssz/
ped.html

[17] POPOVA, L., On Time Petri Nets, J. Information Processing and
Cybernetics EIK 27(1991)4, 227-244.

[18] SCHWIDDER, K., Petri Net Based Modelling and Simulation of
Automation Techniques’ Discrete Processes (in German); in
Scheschonk, G.; Reisig, W. (eds.): Petri Net Applications for
Design and Development of Information Systems, Springer 1993,
pp. 209-221.

[19] STARKE, P. H., INA - Integrated Net Analyzer, Manual (in
German), Berlin 1992.STARKE, P. H., Analysis of Petri Net
Models (in German), Teubner, Stuttgart 1990.

[20] STARKE, P. H., Analysis of Petri Net Models (in German),
Teubner, Stuttgart 1990.

[21] VALMARI, A., A Stubborn Attack on State Explosion, Formal
Methods in System Design 1, (1992) 4, 297-322.

[22] VALMARI, A., Alleviating State Explosion during Verification of
Behavioral Equivalence, Univ. of Helsinki, Department of
Computer Science, Report A-1992-4, Helsinki 1992.

[23] VARPAANIEMI, K., On Computing Symmetries and Stubborn
Sets, Helsinki Univ. of Technology, Digital Systems Laboratory
Report B 12, Espoo 1994.

[24] VARPAANIEMI, K., HALME, J., HIEKKANEN, K., PYSSYSALO, T.,
PROD Reference Manual, Helsinki Univ. of Technology, Digital
Systems Laboratory, Series B: Techn. Report No. 13, August
1995.

[25] WIKARSKI, D., HEINER, M., On the Application of Markovian
Object Nets to Integrated Qualitative and Quantitative Software
Analysis; Fraunhofer ISST, Berlin, ISST-Berichte 29/95, Oct.
1995.

