
Heiner, Deussen: A Case Study in Design and Validation of Reactive Systems by Means of Petri Nets

Appendix: Petri net of the production cell, control model - overview.

css - change sensor state

css

stop_command

wait_stop_con

start_command

arm1_stop arm1_forward

arm1_release_ext

arm1_retract_ext

A1U_extended

ready_to_stop

running

A1U_rotated

special logical nodes:

actuator states

sensor states

logical nodes:

swivel

ch_PA2_fullch_PA2_free

ch_FT_full

ch_FT_free

ch_A2D_free

ch_A2D_full

ch_TA1_free

ch_TA1_full

ch_A1P_free ch_A1P_fullch_CF_full ch_CF_free

ch_DC_freech_DC_full

crane (7)

arm1 (3)

arm2 (5)

feed_belt (1)

deposit_belt (6)

table (2)

press (4)

ch_TA1_free

ch_TA1_full

ch_A1P_free

ch_A1P_full

arm1_lock_swivel_2

arm1_waiting_for_swivel_2

arm1_having_swivel_1

arm1_unlock_input_area

swivel

arm1_unlock_swivel_2

arm1_having_swivel_2

arm1_unlock_output_area

swivel

swivel

swivel

arm1_lock_output_area

arm1_storing

arm1_unlock_swivel_1

arm1_lock_swivel_1

arm1_waiting_for_swivel_1

arm1_lock_input_area

arm1_store_free

arm1_unloading (3.2)

arm1_loading (3.1)

A1U_out

A1U_rotated

arm1_magnet_off

arm1_magnet_on
A1U_ungrasp

A1U_unloaded

arm1_stop

arm1_backward

arm1_release_ext

arm1_retract_ext

A1U_extended

arm1_stop

arm1_forward

arm1_retract_ext

arm1_release_ext

A1U_ret

A1U_ext

A1U_out

A1U_in

A1U_rotated

arm1_unlock_output_area

arm1_lock_swivel_2

A1U_ungrasp (3.2.2)

A1U_rotate (3.2.1)

(3.2.2.1)  A1U_ext:

(3.2.2)  A1U_ungrasp:

(3.2.2.1)

(3.2.2.2)

(3.2)  arm1_unloading:

(3)  arm1:(0)  top level:

macro transition

macro place

macro nodes:

Drawing convention (right):
Shaded nodes are so-called logical nodes. They serve as
connectors to avoid immoderate edge crossing. All logical
nodes with the same name are logically identical.

Assumptions on the environment model (left):
• A start command will force the associated device to

change from an inactive (arm1_stop) to an active
(arm1_forward) state (a stop command vice versa).

• The performed motion will cause eventually the change
from the initial sensor value (arm1_retract_ext) to a
final sensor value (arm1_release_ext), indicating that
the motion has been completed.

Statistics:
• The total hierarchically structured Petri net

consists of 232 places and 202 transitions,
devided into 65 nodes of the hierarchy tree.

• There are 37  macro transitions, containing the
elementary motion steps (e.g. 3.2.2.1) and
forming the sheets of the hierarchy tree.
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For the cooperation model, this requirement is expressed by the
CTL formula

Because the cooperation model does not comprise an
environment model, system properties are only expressible in
terms of internal system states (names of places holding a token)
like “arm1_loading” or “press_go_loadpos”.

If a model of the behaviour of the system environment is
included in the system description, properties can be expressed
in terms of this environment model. Within the control model,
the requirement mentioned above is expressed by the LTL
formula

The major difference between the two formulae is that the latter
contains no references to internal system states. In the same way,
most of the safety requirements for the production cell can be
expressed on the base of a few simple and - by means of a net
model - well-documented assumptions on the environment
behaviour.

6 Final Remarks
Up to now, a Petri net model to control the given production cell
has been developed which enjoys provably a lot of valuable
qualitative properties - general as well as special ones. Beyond
that, the following investigations are in preparation:

• quantitative analysis by different types of time-dependent
Petri Nets:
by Duration Interval Nets [17] based on Interval Nets [19] to
prove the meeting of given deadlines by worst-case
evaluation, and by Stochastic Nets [27] to estimate
throughput or average processing time;

• synthesis of the actual control software based on [20].

Throughout our case study, (the rarely available and rather
restrictive) compositional approaches of Petri net analysis have
not been discussed yet. They have been skipped in order to get a
feeling for the borders of those net/state space sizes, which are
actually manageable by available analysis tools.
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reachability graph analysis, the model checking approach of PEP
is based on the construction of a so-called finite prefix of a
branching process [10], which is only suitable for 1-bounded
Petri nets. However, both the finite prefix construction and the
model checking work extraordinary fast: The liveness of transi-
tions can be checked within the insignificant time amount of 0.3
seconds! Similar results are obtained for those safety properties
(about the half of the required) which are expressible in this logic.

Several required safety properties of the control model have been
proven successfully using PROD’s stubborn set based on-the-fly
verification method. The following conclusions are worth
mentioning:

1. The existence of an environment model allows to express
both assumptions on the behaviour of physical machines and
system properties in terms of the influence of a system on its
environment. Evidently, requirements expressed in this way
are comprehensible without a deeper knowledge of the
internal structure of a system.

2. Because of the structure of the environment model, it is
impossible to express properties related to illegal states of
single devices. A more improved model must contain explicit
error states.

3. The stubborn set based on-the-fly verification method has
been proven to be applicable even for systems with a larger
state space. The analysis efforts were between 2 and 25
minutes for the formulae for which a model checking were
done. However, certain properties like the liveness of transi-
tions cannot be expressed in LTL because of the lack of a
quantification on computation paths.

4. Although the expressive power of PEP’s temporal logic is
rather restrictive, simple liveness and safety requirements can
be verified very efficiently. Therefore, the model checking
techniques provided by PEP and PROD appear to be comple-
mentary to each other.

5 Examples of Verified Safety Properties
We will illustrate the different levels of reasoning on system
behaviour of the cooperation and control models. For the
following, see the appendix which contains an overview on the
structure of the Petri net model of the production cell.

One safety property required for the controller software of the
production cell is:

The press may only close when no robot arm is positioned
inside it.

Table 1: Size of analyzed nets and analysis efforts done (cooperation model).

a) processed candidates to check the deadlock trap property
b) number of states of the stubborn reduced reachability graph Rstub
c) number of states of the complete reachability graph R
d) time effort to generate R (with coverability test)
e) time effort to generate R (without coverability test)
f) time effort to generate R
g) contains dead states

places/
transitions

Analysis (INA) Execution Times

DTPa) Rstub
b) Rc) INAd) INAe) PRODf)

table / press
with init part
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13 / 9
12 / 8

(N)
28

12
8
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abstraction levels. The more abstract cooperation model
describes the synchronization of the machine controllers. This
model has been influenced essentially by [3]. The construction
of the model was done step-wise. At first, common patterns
concerning the intended communication behaviour of the
controllers for the physical devices have been identified and
modelled as Petri nets. Then, the complete cooperation model
was constructed by composition of instances of these communi-
cation patterns by merging certain communication places (see
Appendix, the (0) top level net).

General analysis was done using INA, while for special analysis
certain requirements were expressed in CTL and proven for the
complete state space of the composed model using PROD.

After designing and analyzing successfully the cooperation
model, a refinement has been done which incorporates the inter-
actions of the controllers with the interface (actuators, sensors)
of the production cell. Furthermore, this control model
comprises a Petri net description of the environment which
allows to express certain assumptions on the behaviour of the
physical devices in response to the controllers’ actions. As
before, the construction of the model was done bottom-up: A net
structure for an elementary control procedure was defined which
involves the controller part as well as the environment part of
one basic motion step of one device. One basic step consists of
(compare 3.2.2.1 in the Appendix):

• the activation of some device (transition start_command),

• the reception of a certain sensor value that indicates that the
motion is completed (transition wait_stop_con), and

• the deactivation of the device (transition stop_command).

More complex motion step controls were constructed by compo-
sition of elementary ones (see 3.2.2 and 3.2 in the Appendix).

Again, INA and PROD were applied for general and special
analysis. Because of the extraordinary size of the state space of
the control model, the time and space effort to generate the
complete reachability graph became unacceptable. For this
reason, safety requirements were expressed in LTL. While
PROD supports model checking for CTL only by the complete
reachability graph of a Petri net, LTL formulae not containing
the nexttime operator can be checked very efficiently by
construction of a reduced state space which is in so-called
CFFD-equivalence to the complete state space using the
stubborn set method (see [6, 11, 23, 24, 25]). PROD provides a
so-called on-the-fly verification method based on this approach.

feed belt (belt 1)

deposit belt (belt 2)

elevating rotary table

robot

arm 1

arm 2

press

travelling crane

Figure 1: Top view of the production cell 4 Summary of the Main Analysis Results
Cooperation model. In general analysis, we are basically inter-
ested in proving the general properties boundedness and
liveness. Using INA, both properties can be decided efficiently
by showing that the net under consideration are covered by
semipositive place invariants and by proving the deadlock trap
property, respectively, because of certain structural properties of
the corresponding net models (marked graphs or extended
simple nets). Dead states in one discussed controller version
have been found very fast by the stubborn set reduction method.
Table 1 compiles some details on the size of the analyzed nets
and the analysis efforts done. Please note especially the
impressive reduction effect inherent to the stubborn set method.
The analysis was done on a SUN sparc station 5.

The reachability graph analyzer PROD has been successfully
applied to prove certain safety properties of the cooperation
model given by CTL formulae. Two major problems have been
arisen:

1. The expressibility of certain properties. Due to the lack of
appropriate terms of the behaviour of physical devices,
requirements which are given explicitly in terms of the
system’s interaction with the environment (like sensor
values) cannot be expressed only in terms of internal system
states.

2. The time effort for model checking. Safety properties of the
general logical form (ϕ a state formula) can be
checked within an acceptable amount of time (about a few
minutes). For systems with a medium-sized state space, the
time effort to validate more complex formulae like progress
properties of the form  (ϕ, χ state
formulae) is extraordinary large (about ten hours on a SUN
sparc station 20).

Control model. For the control model, a complete construction
of it’s state space became impossible (we have stopped the
generation after about 2 days, having generated more than
700.000 states). In spite of this, boundedness is still decidable
very efficiently by showing that the net model is covered by
semipositive place invariants (again it took only a few seconds).
Due to the added environment behaviour, all discussed net
models exhibit a net structure beyond the extended simple one.
So, the deadlock trap property could only show the freedom of
dead states. However, the construction of the stubborn set
reduced reachability graph is still manageable even for larger
systems with unknown size of the complete state space. So, the
prove of the deadlock freedom seems to be practicable in any
case.

It was impossible to prove liveness using INA or PROD,
because of the lack of suitable structural properties and the size
of the state space. The liveness of a transition t can be expressed
in CTL by the formula  (  denotes the
proposition that all preconditions of a transition t are satisfied),
but not analyzed by PROD. In LTL, only a stronger property
related to the livelock freedom of transitions can be expressed by

, and actually analyzed by PROD’s on-the-fly verifi-
cation. Unfortunately, not (but almost) all transitions in the
control model enjoy this property.

Recently we have gained some results with one of the model
checking components of PEP, which supports a fragment of CTL
containing only the temporal operators AG and EF. Hence, it is
impossible to express progress properties in this logic. Instead of

AG ϕ¬( )

AG ϕ AFχ→( )

A G EF en t( )( ) en t( )

G F en t( )
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aided methods in the pre-operation phase.

Concerning the type of properties to be validated, two classes of
qualitative validation techniques can be distinguished:

• Context checking deals with general qualitative properties
like freedom from data or control flow anomalies which
must be valid in any system independent of its special
semantics (for that reason, it is called in the following
general analysis). These properties are generally accepted or
project-oriented consistency conditions of the static
semantics of any program structure like boundedness and
liveness.

• Verification aims at special qualitative properties like
functionality or robustness which are determined by the
intended special semantics of the system under development
(to underline this fact, it is called in the following special
analysis).

Both general and special analysis aim at time-less properties
which should be valid independent of time. Unfortunately, that is
not always obvious in the case of concurrent systems.

Evidently, a successful general analysis is a prerequisite to prove
that some special qualitative properties will be fulfilled under
any circumstances. So, the validation of qualitative properties
can be divided into two consecutive steps, which supplement
each other. First, the context checking of general semantic
properties (general analysis) has to be done by a suitable combi-
nation of static and dynamic analysis techniques of Petri net
theory, e. g.

• animation by playing the token game,

• static analyses by net reduction, structural analysis or net
invariant analysis,

• dynamic analyses by complete/reduced construction of the
system’s state space (reachability graph),

• model checking of temporal formulae.

Afterwards, the verification of well-defined special semantic
properties (special analysis) given by a separate specification of
the required functionality has to be performed. Especially for the
second step it is very useful to supplement the power of
“classical” Petri net theory by the model checking approach,
using temporal logic as a flexible query language for asking
questions about the (complete/reduced) set of reachable states.

Net-based animation aims at functional behaviour simulation by
playing the token game. The results gained depend on the
abstraction level of the underlying net model. But in any case,
this special version of prototyping is only a confidence-building
approach unable to replace exhaustive analysis methods.

All static analysis techniques have in common that they avoid
the construction of the reachability graph. Reduction and struc-
tural analysis (e.g. the deadlock trap property) correspond
mainly to general analysis (of (un-) boundedness or (un-)
liveness). The invariant analysis supports general analysis (if the
net is covered with semipositive place invariants) as well as
special analysis. In the latter case, program invariants are proven
by showing the existence of related net invariants. So first,

1) The investigations presented in [16] are actually a mixture of both
approaches. We started with the second one by following the Eiffel solu-
tion presented in [3]. Encouraged by the clear net structures and the analy-
sis results gained, we were optimistic that also a complete Petri net-based
development of the control software should be possible. So we changed to
the approach mentioned firstly.

suitable program invariants have to be hypothesized, and second,
the related net invariants have to be found from the (in general
non-minimal) basis of invariants provided by a net analysis tool.
Generally, this is hardly manageable for larger systems (larger
concerning the size of states).

Dynamic analysis techniques have to be used if the static
analysis efforts were not successful, or if properties are wanted
which cannot be analyzed statically at all (e.g. reversibility,
livelock freedom, dynamic conflicts - especially those conflicts,
where communication places are involved, firing of facts, etc.).
Due to the well-known effect of state explosion, lazy
construction methods to consider only reduced state spaces have
been elaborated. E.g. the stubborn set reduced reachability graph
is usually (in the case of highly concurrent systems) much
smaller than the complete one, but exhibits all dead states, if any.

For verification purposes, temporal logic is widely accepted as a
flexible language for the specification of required system
behaviour. In Linear Time Temporal Logic (LTL) [7], the
classical (propositonal) logic is augmented with temporal
operators, for instance X, F, and G. The course of time is
regarded to be linear, i. e. for a given system state, LTL formulae
express properties for every possible future system behaviour.

 states that ϕ is true at every immediate successor state,
means that ϕ will eventually be true, while  expresses that
henceforth ϕ holds.

In Computational Tree Logic (CTL) [1], time is regarded to be
tree-like structured: The temporal operators are combined with
the path quantifiers A (formula holds for every future behaviour)
and E (formula holds for at least one future behaviour).

In model checking, the reachability graph (in different versions)
of a Petri net is interpreted as a model of the behaviour of the
net, and the validity of a temporal formula in this model is
checked by inspection. All properties can be checked which are
expressible in those versions of temporal logics which are
provided by the tools used. In this way, even very large reacha-
bility graphs become manageable.

The tool kit used is as follows: The graphical Petri net editor
PED is based on [5] and is still under development to be adapted
to current wishes. It supports basically the construction of hierar-
chical place/transition nets. Complementary, all necessary
attributes of those net types can be assigned, which are
analyzable by INA. The analysis tools in use INA [22], PROD
[26] and PEP [2] have to be understood as implementations of
well-proven theorems of Petri net theory. Not included in [16]
are our experience of the qualitative analysis power of PEP,
which has become available lately. At the end of section 4 we
give a brief discussion of the results gained in the meantime.

3 Case Study
The focus of our investigations builds a (really existing) indus-
trial facility. This production cell comprises six physical compo-
nents: two conveyor belts, a rotatable robot equipped with two
extendable arms, an elevating rotary table, a press, and a
travelling crane. The machines are organized in a (closed)
pipeline (figure 1). Their common goal is the transport and trans-
formation of metal plates. For details the reader is referred to
[18]. In that paper, also a list of safety and liveness requirements
can be found which are to obey by an implementation of the
control program.

We have developed and analyzed the control software in two

Xϕ Fϕ
Gϕ
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Abstract. The development of provably error-free
concurrent systems is still a challenge of system engineering.
Modelling and analysis of concurrent systems by means of Petri
nets is one of the well-known approaches using formal
methods. To evaluate the reached practicability degree of
available methods and tools to at least medium-sized systems,
we demonstrate the step-wise development and validation of
the control software of a reactive system. The validation of
qualitative properties comprises two steps. At first, context
checking of general semantic properties is done by a suitable
combination of static and dynamic analysis techniques of Petri
net theory. Afterwards, verification of well-defined special
semantic properties, especially safety properties, given by a
separate specification of the required functionality, is performed
by model checking. Strong emphasis has been laid on
automation of the analyses to be done.
This paper provides a brief outline of the authors’ work which
is described in detail in [16].

Keywords: Parallel software/system engineering, static
analysis, formal methods, Petri nets, temporal logics, control
software, reactive system, discrete event systems, reliability.

1 Introduction
The development of provably error-free concurrent systems is
still a challenge of system engineering. Modelling and analysis
of concurrent systems by means of Petri nets is one of the well-
known approaches using formal methods. To evaluate the
reached practicability degree of available methods and tools to at
least medium-sized systems, the authors demonstrate in [16] the
step-wise development and validation of the control software of
a reactive system - a (really existing) production cell in a metal-
processing plant [18]. In this paper, a brief outline of our work is
presented.

The validation of qualitative properties comprises two steps. At
first, context checking of general semantic properties is done by
a suitable combination of static and dynamic analysis
techniques, mainly of “classical” of Petri net theory. Afterwards,
verification of well-defined special semantic properties,
especially safety properties, given by a separate specification of
the required functionality is performed. Strong emphasis has
been laid on automation of the analyses to be done.

The case study has been designed to evaluate different kinds of

software development methods. The objective is to develop
verified control software, taking into account various safety
conditions and performance constraints. This case study has
been already investigated by a lot of different formal methods
[18], but up to now Petri nets have been used only as supple-
menting description. This paper provides the possibility to
consider also a strongly Petri net-oriented approach to compare
advantages and drawbacks inherent to different formal methods.

This paper is organized as follows. Section 2 gives a short
overview of the Petri net based framework of software validation
and introduces some basic terminology. The essential points of
the discussed case study concerning the task description and the
modelling of the controller components for the production cell
are presented in section 3. Section 4 gives a short overview of
the main analysis results obtained, while section 5 shows two
typical examples of the verified safety properties. Finally,
section 6 comprises an outlook on further work in preparation
and open questions, which have to be solved in order to improve
the Petri net based validation.

2 Petri Net Based Framework of Software
Validation

Net-based software engineering has been a well-know approach
for more than 15 years. Basically, there are two different possi-
bilities of the role Petri nets are able to play during the software
development process.

When used right from the beginning, Petri nets are constructed a
priori to model and prototype the concurrent aspects of the
system under development, and the developer is able to predict,
at the chosen abstraction level, the possible behaviour of the
system. After being satisfied with the analysis result obtained,
the program code (of the communication skeleton) in the usually
given implementation language can be generated.

The second approach to the use of Petri nets in concurrent
software development relies on the a posteriori generation of
Petri nets from an high-level language description of the
software under development (interpreted as specification, imple-
mentation, or anything in between), see e. g. [15].

Independent of its place within the software development
cycle1), validation tries to minimize the presence of faults in the
operation phase by analytical and (as far as possible) computer-
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