
Proc. 2nd Int. Workshop on Manufacturing and Petri Nets, Toulouse, June 1997,
held at Int. Conf. on Application and Theory of Petri Nets (ICATPN ‘97), pp. 69 - 84.

97/11/07 1 / 16

VERIFICATION AND OPTIMIZATION OF CONTROL PROGRAMS
BY PETRI NETS WITHOUT STATE EXPLOSION 1)

Monika Heiner

Brandenburg University of Technology at Cottbus
Computer Science Institute

Postbox 101344
D-03013 Cottbus

mh@informatik.tu-cottbus.de
http://www.informatik.tu-cottbus.de

Abstract: The development of provably error-free and efficient concurrent manufacturing systems
is still a challenge of practical system engineering. Modelling and analysis of concurrent systems
by means of Petri nets is one of the well-known approaches using formal methods. Among those
Petri net analysis techniques suitable for strong verification purposes there is an increasing amount
of promising methods avoiding the construction of the complete interleaving state space, and by
this way the well-known state explosion problem. This paper demonstrates that available methods
and tools are actually applicable successfully to at least medium-sized manufacturing systems. For
that purpose, step-wise validation of various system properties (consistency, safety, progress) and
optimization of the concurrent controller software of a discrete event system is performed. If
possible, different analysis techniques are applied and compared with each other concerning their
efforts.

keywords: programmable logic controller, hierarchical place/transition nets, verification, optimi-
zation, temporal logics, model checking, interval nets;

1 Introduction

Petri nets enjoy several advantages with respect to modelling and analysis of discrete event
systems with inherent concurrency. Worth mentioning is especially the ability of combining
different methods on a common representation. This variety ranges from informal (animation)
via semi-formal (systematic testing) up to formal (exhaustive analysis) methods and comprises
qualitative as well as quantitative evaluation techniques. But maybe most valuable is the fact
that among the formal methods suitable for strong verification purposes there is an increasing
amount of promising methods avoiding the construction of the complete interleaving state
space, and by this way the well-known state explosion problem.

This paper gives an overview on these alternative methods and reports our experience
concerning their strength and limitations for verification and optimization purposes by a
running example.

The discussion covers

1) This work is supported by the German Research Council under grant ME 1557/1-1.

2 / 16 mh@informatik.tu-cottbus.de

TitleVerification and Optimization of Control Programs by Petri Nets without State Explosion

• static analysis techniques, constructing no state space at all,
• compression techniques, representing the transition relation by its characteristic function,
• lazy state space construction, building reduced (interleaving) state spaces, which are

generally much smaller than the complete state space for highly concurrent systems,
• alternative state space construction, exploiting concurrency to build partial order (true

concurrency) descriptions of the system behaviour.

Beyond the more sophisticated (but scalable) running example, it is claimed that the optimistic
analyses results are typical for a certain class of practical problems. This assumption is
justified by case studies performed at our institute (see e.g. [10], short version in [11]), in
which Petri net specifications of controller software of realistically sized production cells were
developed. Step-wise validation processes were done in two stages: First, context checking
(general analysis) of general semantic properties (mainly freedom of deadlocks, liveness and
boundedness) was managed. Second, verification of well-defined special semantic properties,
progress as well as safety properties, given by a separate requirement specification, was
performed (special analysis). As widely accepted, temporal logics are a suitable tool to express
such properties. For the evaluation of temporal logic formulae, the model checking approach is
preferable to proof techniques in the case of finite state systems.

In this paper, we deal mainly with qualitative analysis techniques suitable for place/transition
nets without time constraints. Quantitative analyses are considered only to prove the unreacha-
bility of explicit error states. More detailed quantitative evaluations of our case studies, e. g. by
different types of time-dependent Petri nets to prove the meeting of given deadlines in the
framework of worst-case evaluation, and by stochastic nets to estimate throughput or average
processing time, are in preparation.

The running example is an adopted version of the pusher problem for which in [18] a control
program has been synthesized automatically. By this way, this paper presents a reversal check
for that synthesis. General transformation rules are sketched to transform programmable logic
controller (plc) programs into ordinary place/transition Petri nets. Therefore, the rich amount
of available Petri net analysis techniques and tools can be applied for computer-aided analysis
of programmable logic controller programs.

The paper is organized as follows. Section 2 gives a quick review on Petri net related analysis
techniques which were used in our case studies. In section 3 and section 4, the running
example and its informal requirement specification is introduced. Afterwards, the chosen way
of modelling with hierarchical Petri nets is demonstrated in section 5. The validation of quali-
tative properties is described in more detail in section 6, while the necessity of handling quanti-
tative properties in case of explicit error states is highlighted in section 7. Both analysis steps
may take advantage of an optimization step. Related results are summarized in section 8.
Finally, some conclusions are summarized in section 9.

2 Techniques and Tools

Concerning methods for the analysis of Petri nets, animation, static techniques, and dynamic
techniques can be distinguished.

Proc. 2nd Int. Workshop on Manufacturing and Petri Nets, Toulouse, June 1997,
held at Int. Conf. on Application and Theory of Petri Nets (ICATPN ‘97), pp. 69 - 84.

97/11/07 3 / 16

Net-based animation aims at functional behaviour simulation by playing the token game. The
results gained depend on the abstraction level of the underlying net model. But in any case, this
special version of prototyping is only a confidence-building approach unable to replace
exhaustive analysis methods.

All static analysis techniques have in common that they avoid the enumeration of the state
space of a system. The integrated net analyser INA [21] provides an almost complete
collection of static analysis techniques of the “classical” Petri net theory [20].

Basic techniques corresponding mainly to general analysis (of boundedness or liveness) are
reduction (local reduction rules to minimize the net structure) and structural analysis (struc-
tural properties allowing conclusions on behavioural properties, e.g. deadlock trap property).
In opposite to that, linear-algebraic analysis revealing invariants supports general analysis (if
the net is covered with semipositive place/transition invariants) as well as special analysis. In
the latter case, program invariants are proven by showing the existence of related net invar-
iants. So first, suitable program invariants have to be hypothesized, and second, the related net
invariants have to be found from the (in general non-minimal) basis of invariants provided by a
net analysis tool. Generally, this is hardly manageable for larger systems (larger concerning the
size of states). Recently, new approaches appeared to combine invariant analysis techniques
with an analysis of traps and model checking algorithms as well [13], [15].

If a desired system property can not be determined by structural analysis techniques, dynamic
analyses may be applied. The classical approach is the exhaustive construction and exploration
of the (interleaving) state space (reachability graph). INA provides the determination of
general net properties like the freedom of deadlocks, boundedness, and liveness based on
reachability analysis. More sophisticated analysis tasks can be formulated in the query
language of the reachability graph analysis tool PROD [25]. Computational Tree Logic
(CTL)1) is completely expressible in this language.

Although almost every behavioural property of a Petri net with finite reachability graph can be
theoretically decided by exhaustive analysis, this approach is limited in practice due to the state
explosion problem.

Compression techniques alleviate the state explosion by avoiding an explicit representation
of the (interleaving) state space of a concurrent system. Ordered binary (or natural) decision
diagrams (OBDDs, ONDDs) [2], [13] represent sets of states (and sets of transitions between
states) by their characteristic function. Model checking (in this context sometimes called
symbolic model checking) of temporal logic formulae can be performed on OBDDs (ONDDs)
without an explicit enumeration of the state space state by state. Symbolic model checking was
not considered yet in the validation of our case study examples, but is in preparation based on
the ideas outlined in [26]. For an experience report of this approach see in the meantime e.g.
[3].

For some analysis questions, it is only necessary to construct a reduced version of the inter-
leaving state space of a system instead of the complete one. If we deal with system properties
which are invariant under the interchanging of concurrent transition occurrences, it is unnec-

1) For an introduction to temporal logics and the notation used in this paper see [5].

4 / 16 mh@informatik.tu-cottbus.de

TitleVerification and Optimization of Control Programs by Petri Nets without State Explosion

essary to consider all those interleavings. In this way, dead states for instance can be found or
the un-/reachability of special states can be decided by considering an usually small subset of
all possible interleaving paths. Methods based on this idea are sometimes called partial order
methods (a term which should be sharply distinguished from partial order representation
techniques described below). An example of a partial order method is Valmari’s stubborn set
method [23]. The stubborn set method can be combined with other techniques like the sleep set
method [9], and the symmetry method [24]. Valmari developed a generalization of his method
in a way that properties expressible by Linear Temporal Logic (LTL) without the nexttime
operator X are preserved by the reduction process. Therefore, the standard model checking
technique for LTL can be applied to stubborn reduced reachability graphs. Besides its model
checking facilities for CTL, PROD provides a LTL model checker based on this approach. The
basic stubborn set method for deadlock detection is also implemented in INA.

An alternative class of approaches to handle the state explosion problem bases on partial
order representations of the behaviour of a concurrent system. Instead of sequences of events
(i. e. occurrences of transitions), partially ordered sets of events are used as behaviour
description. Partial orders of events can be interpreted in the following way: If an event
precedes another one then the former one causes the latter, or the former one has to occur
earlier in time than the latter. Since state explosion is in general caused by the representation of
all possible interleavings of concurrent actions, partial order representations tend to be much
smaller than reachability graphs.

A currently intensively discussed partial order representation approach is the construction of a
“finite complete prefix of a branching process” of a Petri net (shortly called the prefix of the
net) [6], [14]. The possible behaviour of the net is represented by another, so-called occurrence
net. The PEP tool [1], [7] provides, besides many other things, an efficient model checking
algorithm based on this net prefix for a very restricted subset of CTL comprising only the
temporal operators AG and EF. This model checker is restricted to safe (1-bounded) Petri nets.

Which tools should be applied in which order depends on the analysis methods they are based
on. Which tools may be applied at all for a given type of question depends on their power to
express a specific analysis question. To highlight differences between the applied tools
concerning their expressiveness, it is useful to summarize typical questions/properties dealt
with during analysis. In the following ϕ stands shortly for a general logical expression charac-
terizing usually a (wanted or unwanted) state or set of states.

(1) reachability-related properties of the logical form : Reachability of a state where
ϕ holds; there exists at least one computation path (future behaviour) to reach eventually
a state where ϕ will be true.

(2) safety-related, or equivalent : Unreachability of a state where ϕ
holds; for every computation path, ϕ will never be true.

(3) invariant-related, or equivalent : General validity of an assertion ϕ;
for every computation path, ϕ will be true for ever.

(4) liveness-related, : What ever happens, there exists the chance (at least one
path) that ϕ will be true.

EF ϕ

AG ϕ¬() EF ϕ¬

AG ϕ EF ϕ¬()¬

AG EF ϕ

Proc. 2nd Int. Workshop on Manufacturing and Petri Nets, Toulouse, June 1997,
held at Int. Conf. on Application and Theory of Petri Nets (ICATPN ‘97), pp. 69 - 84.

97/11/07 5 / 16

(5) progress-related, : For every computation path, ϕ will eventually be true.

Table 1 describes which tool may be applied for which type of logical expression.

The tool kit used up to now comprises PED (hierarchical Petri net editor) [16], INA (structural
properties, place/transition invariants, stubborn set reduced deadlock and reachability analysis,
net reductions) [21], PROD (stubborn set reduced deadlock analysis and model checking -
LTL\X) [25], and PEP (prefix-based model checking - CTL0, linear-algebraic analysis) [1].
More details can be found in the related tool manuals.

3 Task Description

Starting from this basic situation, chains of concurrent pushers may be constructed in order to
move pieces step by step from the input position via a number of inner positions to the output
position.

AG AF ϕ

Table 1: Temporal operators provided by the different tools.

Tool
Supported type

of logic
Operators

Types of
properties

INA - EF ϕ (but ϕ can only be given by a
(sub-) marking)

(1), (2)

PEP (restricted) CTL AG, EF (1) - (4)

PROD LTL (without next-
time operator)

G, F, U (unquantorized versions of
AG, AF, AU)

(2), (3), (5)

PROD (full) CTL EX/AX, EF/AF, EG/AG, EU/AU (1) - (5)

Figure 1: Plant.

Pos. 3 Pos. 2

Pu
sh

er
 1

R
 2

R
 1

Pusher 2

M

M

Piece, Pos. 1

Controller 2

R
 2

R
 1

Controller 1

To make the paper self-contained, the
running example, adopted from [18], is
shortly sketched.

The example consists basically of two
concurrently working pushers moving work
pieces (see figure 1). The work piece is
moved from position one to position two by
the first pusher, and from position two to
position three by the second pusher. Both
pushers are driven by electric motors which
can be controlled by corresponding relays
into two moving directions.

6 / 16 mh@informatik.tu-cottbus.de

TitleVerification and Optimization of Control Programs by Petri Nets without State Explosion

4 Requirement Specification

In addition to the task description given above, a list of informally specified safety and
progress properties is provided. Typical properties of this type are:

(a) safety

• At any time, a pusher can be driven in one direction only.

• To avoid collisions, it is not allowed to move adjacent pushers at the same time.

• No pusher motion must be driven too far/near.

• While moving a pusher, a new work piece must not arrive in its input position.

(b) progress

• After an active phase of a pusher, its successor will be activated before the predecessor
will be started again.

• It is guaranteed that each pusher works infinitely often (livelock freedom).

• Any work piece entering the plant will finally leave the plant.

(c) consistency

• Additional properties to be verified emerge during modelling reflecting useful (self-)
consistency checks (see section 5.1).

5 Modelling with Hierarchical Petri Nets

The composite model is structured into three layers. The top layer of a transport system with
two pushers (Figure 2) consists of six macro components. Each macro transition P1 and P2
contains the plant environment model given in Figure 3, but prefixed with the instance names
P1 or P2, respectively (see section 5.1). Each macro transition con1 and con2 contains the
controller software model sketched in Figure 4, but prefixed with the instance names C1 or C2,
respectively (see section 5.2).

5.1 Environment Model

There exists a net component for each device type - building step-by-step a growing reusable

The model of the total system may be charac-
terized by a strong separation of controller
software and environment into different
parts. The controller program consists gener-
ally of a finite and static set of communicat-
ing processes. The environment model is
composed of small reusable components: the
producer/consumer processes of the work
flow, and the devices of the controlled plant.

controller

actuatorssensors

plant

environment

producer consumer

Proc. 2nd Int. Workshop on Manufacturing and Petri Nets, Toulouse, June 1997,
held at Int. Conf. on Application and Theory of Petri Nets (ICATPN ‘97), pp. 69 - 84.

97/11/07 7 / 16

component library to describe the uncontrolled plant behaviour. Each physical device is
basically characterized by its finite set of discrete states (maybe representing equivalence
classes of possibly infinite sets of states), and additionally by the commands (externally visible
transitions - the grey ones) forcing the device to change its current state (see fig. 3). Obviously,
each device must be in one and only one state at any time. In terms of Petri net theory, the
states of a device form a place invariant. In our example, there are two types of devices (relays,
pushers). Accordingly, there are two consistency conditions. E.g. it holds for all pushers Pi:

(P1)

or expressed as temporal formula (stands for exclusive or):

(P1*)

For a more systematic analysis procedure (see section 6 and section 7), two versions of pushers
are considered: without and with explicit error states (too_near, too_far). In the initial state
(marking), all relays are off, the pushers are in their basic positions, and the plant is empty
(contains no work piece).

Figure 2: Top layer of a transportation system with two pushers.

pos3_free

pos3_full

pos2_free

pos1_full pos2_full

pos1_free

con2 consumercon1producer

P2P1

Drawing convention:

Shadowed nodes are so-called logical
(fusion) nodes. They serve as connec-
tors to avoid immoderate edge cross-
ing. All logical nodes with the same
name are logically identical.

R2_on

R1_on

R1_off

R1_set_on R1_set_off

RELAY R1

RELAY R2

R2_set_offR2_set_on

PUSHER
with error states

R2_off

Figure 3: Components of the uncontrolled plant environment model.

too_farF

too_nearF

basic2near

too_near too_far

ext2far

R2_on

R1_on

basic norm ext

basic2norm

norm2basic

norm2ext

ext2norm

Pi_too_near P+ i_basic Pi_norm Pi_ext Pi_too_far+ + +() 1=
.∨

AG Pi_too_near Pi_basic Pi_norm Pi_ext Pi_too_far.∨ .∨ .∨ .∨()

8 / 16 mh@informatik.tu-cottbus.de

TitleVerification and Optimization of Control Programs by Petri Nets without State Explosion

5.2 Control Program Model

The pattern of the essential parts of the controller macro transitions (con1, con2) is given in
Figure 4. The original programmable logic controller programs are written in IEC 1131-3 [4]
(see left part). These programs are (automatically1)) translated into ordinary place/transition
nets. For an example, how this could look like, consider the right side in Figure 4.

In order to avoid unnecessary restrictions of the concurrency degree, it could be helpful to
exploit a special test arc feature for modelling of the transitions’ side conditions (in our
running example: Ri_on, Ri_off. In that case, the amount of data, which has to be searched
through during the analysis steps, may become much smaller, provided the analysis tools are
prepared to handle test arcs (compare discussion in section 6.1).

1) The automatization of this translation is part of the running project.

LD R1_off
AND ext

LD R2_on
AND basic

LD R1_on
AND ext

LD R1_off
AND basic

start_moving

Step 1

Step 2

Step 3

Step 4
BOOL
N

R2_set_off

BOOL
N

R2_set_on

BOOL
N

R1_set_off

BOOL
N

R1_set_on

tr1

tr2

tr3

tr4

tr5R2_off
R2_offtr5

start_moving

tr1

step1 R1_set_on

R1_set_offstep2

tr2 ext

R1_on

R2_on

basictr4

step4 R2_set_off

R2_set_onstep3

tr3

stop_moving

Figure 4: Part of the unoptimized controllers’ program and its Petri net model.

stop_moving

AND posIN_full

AND posOUT_full

AND R2_off

posOUT_full

ext

R1_off

R2_off

basic

R1_off

posIN_full

step1

R1_remains_on

R1_set_on R1_on

R1_on

R1_off

step1

step1

R1_remains_off

R1_set_off R1_off

R1_off

R1_on

step1

Macro: R1_set_on Macro: R1_set_off

Proc. 2nd Int. Workshop on Manufacturing and Petri Nets, Toulouse, June 1997,
held at Int. Conf. on Application and Theory of Petri Nets (ICATPN ‘97), pp. 69 - 84.

97/11/07 9 / 16

5.3 Requirement Specification in Model Terms

Finally, the informally given requirement specifications have to be transformed into the terms
of the formal model.

(a) safety

• At any time, a pusher can be driven in one direction only:

(P2) ,

• To avoid collisions, it is not allowed to move adjacent pushers at the same time:

(P3)

• No pusher motion must be driven too far/near:

(P4) ,

(P5) ,

• While moving a pusher, a new work piece must not arrive in its input position:

(P6) ,

(b) progress

• After an active phase of a pusher, its successor will be activated before the predecessor
will be started again:

(P7)

• It is guaranteed that each pusher works infinitely often (livelock freedom), e.g. (en(t)
stands for the conjunction of all preplaces of t):

(P8) ,

• Any work piece entering the plant will finally leave the plant (which may be considered
as a consequence of (P7) and (P8)), i.e. in case of a two-pushers chain:

(P9)

6 Qualitative Analysis

We present a two-step analysis. At first, the pusher model without explicit error states is
discussed in this section. Afterwards, the error states are integrated leading to the notion of
time (see section 7).

AG Pi_R1_on Pi_R2_on∧()¬() i∀

Pj_Ri_on Pk_Ri_on

i 1=

2

∑+

i 1=

2

∑

1≤ i∀ j k, j 1+:∀, , k=

AG Pi_too_near¬() i∀

AG Pi_too_far¬() i∀

AG posi_full Pi_basic→() i∀

AF Pi_norm Pi_ext∨()AU Pj_norm Pj_ext∨()¬())
AG Pi_norm Pi_ext∨ →()

i j, i 1+:∀, j=

AG AF en Pi_basic2norm()()() i∀

AG pos1_full AF pos3_full→()

10 / 16 mh@informatik.tu-cottbus.de

TitleVerification and Optimization of Control Programs by Petri Nets without State Explosion

6.1 General Analysis

General analysis deals with properties which should be valid independently of the intended
functional behaviour of the system. Basically, these are boundedness and liveness.

boundedness: The net is covered by semi-positive place invariants (INA). Moreover, the token
sum of all these place invariants equals to 1. So we are able to conclude the 1-boundedness of
the net (a necessary precondition for PEP’s model checker).

liveness: The deadlock freedom can be proven very efficiently by construction of stubborn
reduced reachability graphs (INA, PROD), which are generally much smaller than the
complete state space.

Additionally, it can be shown efficiently that the net is covered by semi-positive transition
invariants as necessary (but not sufficient) condition for liveness. But liveness (no dead system
parts) can’t be proven by classical Petri net theory for longer pusher chains, due to the lack of
suitable net structures (the given nets are not Extended Simple, therefore the deadlock trap
property could not help, the known local net reduction rules do not work), and due to the state
explosion by considering all interleaving transition sequences (reachability graph).

The way-out could be a liveness proof for each transition by model checking the temporal
formula: based on the branching process’ prefix. However (compare
Table 2), the prefixes are also unconstructable for more than 6 pushers. The reason for that
seems to be the dynamic conflicts caused by the right-hand transitions in the macros of
Figure 4, bottom - Ri_remains_on, Ri_remains_off). After having switched on/off the corre-
sponding relay, they are reproducing the current state until the control program goes ahead
(because the pusher has reached the position the controller is waiting for). Due to the lack of
test arcs to model side conditions, these reproductions are done in an active way resulting into
“useless” dynamic conflicts.

These dangerous transitions are part of general net components for context-independent
modelling of basic statements (here to switch the relay on/off). Obviously, such a statement is
actually executed in finite time independently of the current situation, i.e. whether the relay is
already on/off. The same should hold for an appropriate model of that basic statement.
Therefore we need generally these transitions under discussion within the corresponding
macro transitions to model adequately both situations. But in case of the given Petri net,
modelling a programmable logic control program, these basic statements appear (only) as side
conditions of the control flow, and never within the control flow. That’s why these transitions
are superfluous in the given case, and we are able to optimize our model by deleting them.

We get a first version of an optimized model with the same state space as the unoptimized one
(compare the third columns of Table 2 and Table 3), but without far less dynamic conflicts. For
this version, the liveness for each transition of the considered pusher chains has been proven by
model checking the corresponding temporal formula based on the branching process’ prefix.

6.2 Special Analysis

(a) safety

AG EF en t()()

Proc. 2nd Int. Workshop on Manufacturing and Petri Nets, Toulouse, June 1997,
held at Int. Conf. on Application and Theory of Petri Nets (ICATPN ‘97), pp. 69 - 84.

97/11/07 11 / 16

There are different analysis techniques available to prove the unreachability of unsafe states
(P2) - (P6):

Facts (INA): The unsafe states may be modelled as facts (special transitions which are
expected to become never enabled). But, the evaluation of bad states (a state where a fact is
enabled) by the given tool kit requires the reachability graph. That’s why we will avoid this
approach.

Stubborn set reduction (INA): The net is transformed in such a way that the unsafe states
become dead states. Then the stubborn set reduced reachability graph has to be constructed.
Because any dead states are preserved under this reduction, the original net does not contain
any unsafe states if the transformed net does not reach any dead states. This technique could be
useful if the required net transformation is done by the analysis tool.

Place invariants (INA): A sufficient condition for the unreachability of a given marking m is
fulfilled if the there exists at least one place invariant x for which the token conservation
equation

is not valid. To check this equation, complete markings must be specified. But unsafe states are
usually given in terms of submarkings (containing “don’t care” places). This main disad-
vantage is overcome in the next approach.

Trap equation (PEP): Based on a linear upper approximation of the state space, a sufficient
condition for linear properties of the type has been introduced in [15]. The imple-
mentation is integrated in the latest version of PEP. We use it to prove (P3).

Model checking of temporal formulae: Model checking, combined with stubborn set
reduction (PROD, LTL\X) or based on the finite complete prefix of a branching process (PEP,
CTL0), provides generally the most convenient method to raise safety questions, esp. because
set of (unsafe) states may be characterized in a concise manner. Both model checkers run very
fast. Due to the evaluation method, they are applicable also to larger systems of which the size
of the interleaving state space is unknown.

(b) progress

(P7) - (P9) use a richer set of (temporal) logical operators. Therefore, model checking facilities
are unavoidable. Due to the AF and AU operators, these properties can be proven only by
PROD. We use it to prove (P7) - (P9) for any pusher chain.

(c) consistency

For any pusher chain, (P1) is analyzable by INA, and in the version of (P1*) by PROD or PEP.
But for larger systems, it is generally a cumbersome task to prove this type of properties by
finding the suitable place invariants.

A summary on the analysis efforts necessary to gain the results mentioned above are given in

x p() m0 p()⋅
p P∈
∑ x p() m p()⋅

p P∈
∑=

A m⋅ b≤

12 / 16 mh@informatik.tu-cottbus.de

TitleVerification and Optimization of Control Programs by Petri Nets without State Explosion

the tables 2 and 3.

7 Quantitative Analysis

In case of explicit error states within the model (Pi_too_far, Pi_too_near), it has to be proven
that a pusher, after having reached the expected extension, is switched off fast enough.
Obviously, we have now to take into consideration also the timing behaviour of the given
system.

In terms of interval Petri nets [12], [17] (usually called time Petri nets) this means that the error
transitions modelling the pusher motions into unsafe states (Pi_ext2far, Pi_basic2near) may be
enabled, but will never fire due to the influence of time. Therefore, the proof of the unreacha-
bility of explicit error states ((P4), (P5)) can be traced back to the proof that the related error
transitions are dead at the initial state.

Table 2: Overview on analysis efforts of the unoptimized model.

Table 3: Overview on analysis efforts of the optimized model.

a) SUN SPARC 20, 32 Mbyte main memory
b) memory overflow after about 50 min having allocated 120 Mbyte main memory.

pushers P / T R Rstub prefix (B / E) time(prefix)a)

1
2
3
4
5

24 / 25
42 / 46
60 / 67
78 / 88
96 / 109

88
464

3.088
18.848
118.624

22
42
79
133
204

128 / 61
293 / 139
510 / 242
779 / 370
1100 / 523

0:0.02
0:0.08
0:0.40
0:3.08
0:43.14

6
7
8
9
10

114 / 130
132 / 151
150 / 172
168 / 193
186 / 214

738.368
4.614.208

?
?
?

292
397
519
658
814

1473 / 701
b)

11:38.86

pushers P / T R Rstub prefix (B / E) time(prefix)

1
2
3
4
5

24 / 21
42 / 38
60 / 55
78 / 72
96 / 89

88
464

3.088
18.848
118.624

22
42
79
133
204

96 / 45
213 / 99
366 / 170
555 / 258
780 / 363

0:0.02
0:0.05
0:0.15
0:0.36
0:0.63

6
7
8
9
10

114 / 106
132 / 123
150 / 140
168 / 157
186 / 174

738.368
4.614.208

?
?
?

292
397
519
658
814

1041 / 485
1338 / 624
1671 / 780
2040 / 953
2445 / 1143

0:1.19
0:1.97
0:3.54
0:5.26
0:6.93

Proc. 2nd Int. Workshop on Manufacturing and Petri Nets, Toulouse, June 1997,
held at Int. Conf. on Application and Theory of Petri Nets (ICATPN ‘97), pp. 69 - 84.

97/11/07 13 / 16

This may e.g. happen because the transitions Ci_tr2 and Pi_R1_set_off (disabling Pi_ext2far)
fire always before Pi_ext2far is willingly to fire (compare figure 5) showing the essential part
of the condensed reachability graph). Generally, a proof like that depends essentially on the
chosen interval times (but can be done by INA, at least as long as the reachability graph fits
into memory). But in this concrete case, we are able to conclude - by evaluating a suitable part
of the reachability graph (or at best a non-interleaving version of it) - that for any time intervals
for which the relations

hold, the dangerous transitions Pi_ext2far will never fire. Similar relations hold for
Pi_basic2near.

8 Optimization

By help of provably correct optimization assumptions, the amount of side conditions at the
transitions in the synthesized controller program may be minimized, e.g.:
• Because ext always implies PosOUT_full:

(P10)

at transition tr2 the side condition PosOUT_full could be deleted.

• Because step2 always implies R2_off:

(P11)

lft Ci_tr2() eft Pi_ext2 far() lft Ri_set_off() eft Pi_ext2 far()<∧<

step1, R1_on, P1_too_far

C_init, R1_off, P1_basic

step1, R1_on, P1_ext

tr1; R1_set_on;

step2, R1_on, P1_ext

step3, R1_off, P1_ext

step2, R1_on, P1_too_far

tr2

R1_set_off; tr3

P1_ext2far

P1_ext2far

Figure 5: Part of the condensed reachability graph.

Remark:
Only the interesting parts of the markings are shown.

bad state!

bad state!

AG ext Po sOUT_full→()

AG step2 R2_off→()

14 / 16 mh@informatik.tu-cottbus.de

TitleVerification and Optimization of Control Programs by Petri Nets without State Explosion

at transition tr3 the side condition R2_off could be deleted.

Of course, code optimization must not destroy any requirement property just proven.
Therefore, regression verification has to be done in the background as the final validation step.

9 Conclusions

At least for the analysis of a restricted class of concurrent systems modelled by Petri nets, the
construction of the complete state space can be avoided by a suitable combination of different
methods (possibly implemented by different tools). This class can be characterized as follows:
• (Intentionally) life and 1-bounded systems (hence, covered by semipositive place and

transition invariants),
• a certain degree of concurrency (which increases the efficiency of partial order methods and

partial order representation methods),
• moderate amount of dynamic conflicts.

So, all qualitative (i.e. timeless) properties and optimization assumptions have been proven
without construction of the reachability graph (interleaving state space). Up to now, the quanti-
tative (i.e. time-dependent) analysis of interval nets is based on reachability graph construction
and evaluation. But in [19], a method has been proposed to describe the behaviour of interval
nets by a finite prefix of branching processes. It seems to be worth thinking over how to
combine both approaches. Nevertheless, all proves were carried out automatically by help of
general Petri net analysis tools. Therefore, they are reproducible in an objective way.

For a general framework for Petri net based development and analysis, we conclude the
following design criteria. At first, dedicated technical languages are needed to express
functional, safety, and performance requirements as well. Second, the framework has to be
customizable. Its components (editors, analysis tools, simulation tools, code generation
facility) should be interchangeable. For a given configuration, user guidelines are required
showing which analysis techniques are recommendable in which order for a given analysis
question. Additionally, design criteria are required which promotes meaningful analyses at
each phase of development.

For specific application areas, dedicated configurations of the framework can be defined
involving also an adaptation of the libraries and the terminology of the user interface. For
instance, in manufacturing control in general, it seems to be possible to compile Petri net
libraries of
• patterns which describe the communication structure of certain devices on a cooperation

level (for the production cell of our case study [11], three such patterns are identifiable, each
of them applicable to at least two devices),

• patterns which are suitable to describe elementary motion steps of the devices, and
• the associated environment models.

Using these libraries, control programs for the supported types of manufacturing systems can
be developed by composition and refinement of instantiated net patterns.

Proc. 2nd Int. Workshop on Manufacturing and Petri Nets, Toulouse, June 1997,
held at Int. Conf. on Application and Theory of Petri Nets (ICATPN ‘97), pp. 69 - 84.

97/11/07 15 / 16

In particular, in case of programmable logic controllers, the user interface may be adapted to
the notions of the IEC 1131-3 standard [4].

References

[1] BEST, E.; GRAHLMANN, B.:
PEP - Programming Environment Based on Petri Nets, Documentation and User Guide;
Univ. Hildesheim, Dep. of CS, Nov. 1995,
http://www.informatik.uni-hildesheim.de/pep/HomePage.html.

[2] BRYANT, E. R.:
Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams;
ACM Computing Survey, 24(1992)3, 293-318.

[3] CORBETT, J. C.:
Evaluating Deadlock Detection Methods for Concurrent Software;
Techn. Report, Dep. of Information and CS, Univ. of Hawaii at Manoa, 1995.

[4] DIN IEC-1131-3:
Pogrammable Logic Controller, Part 3: Programming Languages, 1994.

[5] EMERSON, E. A.:
Temporal and Modal Logic;
in: J. v. Leeuwen, ed.: Handbook of Theoretical Computer Science, Vol. B;
Elsivier, Amsterdam 1990, 995-1072.

[6] ENGELFRIET, J.:
Branching Processes of Petri Nets;
Acta. Inf. 25(1991), 575-591.

[7] ESPARZA, J.:
Model Checking Using Net Unfoldings;
Science of Computer Programming, 23(1994), 151-195.

[8] GERTH, R., PELED, D., VARDI, M. Y., WOLPER, P.:
Simple On-the-fly Automatic Verification of Linear Temporal Logic;
Proc. of the 15th International Symposium on Protocol Specification, Testing and Verification (PSTV'95),
Warsaw 1995, 3-18.

[9] GODEFROID, P.:
Partial-Order Methods for the Verification of concurrent Systems;
LNCS 1032, 1996.

[10] HEINER, M., DEUSSEN, P.:
Petri Net Based Qualitative Analysis - A Case Study;
BTU Cottbus, Dep. of CS, Techn. Report I-08/1995, http://www.informatik.tu-cottbus.de.

[11] HEINER, M.; DEUSSEN, P.; SPRANGER, J.:
A Case Study in Developing Control Software of Manufacturing Systems with Hierarchical Petri Nets;
Proc. 1st Int. Workshop on Manufacturing and Petri Nets held at ICATPN ’96, Osaka, June ’96, pp. 177-196.

[12] HEINER, M.; POPOVA-ZEUGMANN, P.:
Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets;
BTU Cottbus, Dep. of CS, Techn. Report I-02/1996, http://www.informatik.tu-cottbus.de.

[13] LAUTENBACH, K.; RIDDER, H. A.:
Completion of the S-invariance Technique by Means of Fixed Point Algorithms;
Fachbericht Informatik 10/95, Univ. Koblenz-Landau, 1995.

[14] MACMILLAN, K. L.:
Using Unfoldings to Avoid the State Explosion Problem in the Verification of Asynchronous Circuits;
Proc. of the 4th Workshop on Computer Aided Verification, Montreal 1992, 164-174.

16 / 16 mh@informatik.tu-cottbus.de

TitleVerification and Optimization of Control Programs by Petri Nets without State Explosion

[15] MELZER, S.; ESPARZA, J.:
Checking System Properties via Integer Programming;
ESOP ’96, Linköping, LNCS 1058, pp. 250-264.

[16] TIEDEMANN, R.:
PED - Hierarchical Petri Net Editor, Manual (in German);
BTU Cottbus, Dep. of CS, Internal Techn. Report, May 1997,
http://www-dssz.Informatik.TU-Cottbus.De/~wwwdssz/ped.html.

[17] POPOVA-ZEUGMANN, L.:
On Time Petri Nets;
J. Information Processing and Cybernetics EIK 27(91)4, pp. 227-244.

[18] RAUSCH, M.; LÜDER; A.; HANISCH, H.-M.:
Combined Synthesis of Locking and Sequential Controllers;
Proc. WODES ’96, Edinburgh/UK, Aug. 1996, pp. 133-138.

[19] SEMENOV, A.; YAKOVLEV, A.:
Verification of Asynchronous Circuits Using Petri Net Unfolding;
Proc. DAC ‘96, Las Vegas, June 1996, pp. 59-63.

[20] STARKE, P. H.:
Analysis of Petri Net Models (in German);
Teubner, Stuttgart 1990.

[21] STARKE, P. H.; ROCH, S.:
INA - Integrated Net Analyzer Version 1.7, Manual (in German);
Humboldt Univ. at Berlin, April 1997,
http://www.informatik.hu-berlin.de/lehrstuehle/automaten/ina/.

[22] VALMARI, A.:
A Stubborn Attack on State Explosion;
Formal Methods in System Design 1(1992)4, 297-322.

[23] VALMARI, A.:
Alleviating State Explosion during Verification of Behavioral Equivalence;
Univ. of Helsinki, Department of Computer Science, Report A-1992-4, Helsinki 1992.

[24] VARPAANIEMI, K.:
On Computing Symmetries and Stubborn Sets;
Helsinki Univ. of Technology, Digital Systems Laboratory, Series B, Report No. 12, Espoo 1994.

[25] VARPAANIEMI, K. et al.:
PROD Reference Manual;
Helsinki Univ. of Technology, Digital Systems Laboratory, Series B: Techn. Report No. 13, August 1995,
ftp://saturn.hut.fi/pub/reports.

[26] WIMMEL, G.:
A BDD-based Model Checker for the PEP Tool;
Univ. of Newcastle, Dep. of CS, Major Individual Project, May 1997.

