
Proc. 2nd IMACS Symposium on Mathematical Modelling (MATHMOD VIENNA ‘97), February 1997, pp. 171-176

97/05/29 1 / 6

ON EXPLOITING THE ANALYSIS POWER OF PETRI NETS
FOR THE VALIDATION OF DISCRETE EVENT SYSTEMS

Monika Heiner
Brandenburg University of Technology at Cottbus, Computer Science Institute

Postbox 101344, D-03013 Cottbus, Germany
mh@informatik.tu-cottbus.de, http://www.informatik.tu-cottbus.de

Abstract: The development of provably error-free concurrent systems is still a challenge of practical system
engineering. Modelling and analysis of concurrent systems by means of Petri nets is one of the well-known
approaches using formal methods. Among those Petri net analysis techniques suitable for strong verification
purposes there is an increasing amount of promising methods avoiding the construction of the complete inter-
leaving state space, and by this way the well-known state explosion problem. This paper claims to demonstrate
that the available methods and tools are actually applicable successfully to at least medium-sized systems. For that
purpose, the step-wise validation of various system properties (consistency, safety, progress) of the concurrent
control software of a reactive system is performed. If possible, different analysis techniques are applied and
compared with each other concerning its efforts.

keywords: programmable logic controller, hierarchical place/transition nets, verification, temporal logics, model
checking, interval nets;

1 Introduction
Petri nets enjoy several advantages with respect to modelling and analysis of discrete event systems with inherent
concurrency. Worth mentioning is especially the ability of combining different methods on a common represen-
tation. This variety ranges from informal (animation) via semi-formal (systematic testing) up to formal
(exhaustive analysis) methods and comprises qualitative as well as quantitative evaluation techniques. But maybe
most valuable is the fact that among the formal methods suitable for strong verification purposes there is an
increasing amount of promising methods avoiding the construction of the complete interleaving state space, and
by this way the well-known state explosion problem.

This paper gives an overview on these methods and demonstrates their strength and limitations by a running
example. The discussion covers

• static analysis techniques, constructing no state space at all,
e.g. structural properties allowing conclusions on behavioural properties, linear-algebraic analysis revealing
invariants, local reduction rules to minimize the net structure,

• lazy state space construction, building reduced (interleaving) state spaces, which are generally much smaller
than the complete state space for highly concurrent systems,
e.g. stubborn set reduction to decide deadlock freedom or un-/reachability of special states, and to prove the
validity of formulae in a nexttime-free linear time temporal logic (LTL\X),

• alternative state space construction, exploiting concurrency to build partial order (true concurrency)
descriptions of the system behaviour,
e.g. finite prefix of branching processes for model checking, and - just emerging - concurrent automata (CA),
combining the advantages of reachability graphs and branching processes (the nodes are global states; the arcs
are labelled with semi-words of transition events; each branching corresponds actually to a conflict;).

As example serves an adopted version of the pusher problem for which in [7] a control program has been
synthesized automatically. By this way, this paper presents a reversal check for that synthesis. General transfor-
mation rules are sketched to transform programmable logic controller (plc) programs into ordinary place/
transition Petri nets. Therefore, the rich amount of Petri net analysis techniques and tools can be applied for
computer-aided analysis of plc programs.

The tool kit used comprises PED (hierarchical Petri net editor) [5], INA (structural properties, place/transition
invariants, stubborn set reduced deadlock and reachability analysis, net reductions) [9], PROD (stubborn set
reduced deadlock analysis and model checking - LTL\X) [10], and PEP (prefix-based model checking - CTL0,
linear-algebraic analysis) [1]. For short descriptions of the tool features which have been proven to be suitable see
e.g. [2]. More details can be found in the referred tool manuals.

2 / 6 mh@informatik.tu-cottbus.de

Title
On exploiting the analysis power of Petri nets for the validation of discrete event systems

2 Task Description

3 Requirement Specification
In addition to the task description, a list of informally specified safety and progress properties is given. Typical
properties of this type are:

(a) safety

• At any time, a pusher can be driven in one direction only.

• To avoid collisions, it is not allowed to move adjacent pushers at the same time.

• No pusher motion must be driven too far/near.

• While moving a pusher, a new work piece must not arrive in its input position.

(b) progress

• After an active phase of a pusher, its successor will be activated before the predecessor will be started
again.

• It is guaranteed that each pusher works infinitely often (livelock freedom).

• Any work piece entering the plant will finally leave the plant.

(c) consistency
Additional properties to be verified emerge during modelling reflecting useful (self-) consistency checks (see
section 4.1).

4 Modelling with Hierarchical Petri Nets

4.1 Environment Model

For each device type exists a net component - building step-by-step a growing reusable component library to
describe the uncontrolled plant behaviour. Each physical device is basically characterized by its finite set of
discrete states, and additionally by the commands (externally visible transitions - they grey ones) forcing the
device to change its current state (see fig. 3). Obviously, each device must be in one and only one state at any time.
In terms of Petri net theory, the states of a device form a place invariant. In our example, there are two types of

Figure 1: Plant.

Pos. 3 Pos. 2

Pu
sh

er
 1

R
 2

R
 1

Pusher 2

M

M

Piece, Pos. 1

Controller 2

R
 2

R
 1

Controller 1

To make the paper self-contained, the running
example, adopted from [7], is shortly sketched.

The example consists basically of two concur-
rently working pushers moving work pieces (see
figure 1). The work piece is moved from position
one to position two by the first pusher, and from
position two to position three by the second pusher.
Both pushers are driven by electric motors which
can be controlled by corresponding relays into two
moving directions.

Starting from this basic situation, chains of
concurrent pushers may be constructed in order to
move pieces step by step from the input position via
a number of inner positions to the output position.

The model of the total system may be characterized by
a strong separation of control program and environ-
ment into different parts. The control program consists
generally of a finite and static set of communicating
processes. The environment model is composed of
small reusable components: the producer/consumer
processes of the work flow, and the devices of the con-
trolled process.

process controller

actuatorssensors

process
environment

producer
process

consumer
process

Proc. 2nd IMACS Symposium on Mathematical Modelling (MATHMOD VIENNA ‘97), February 1997, pp. 171-176

97/05/29 3 / 6

devices (relays, pushers). Accordingly, there are two consistency conditions. E.g. it holds for all pushers Pi:

(P1)

or expressed as temporal formula (stands for exclusive or):

(P1*)

The composite model is structured into two layers. The top layer of a transport system with two pushers (Figure
2) consists of six macro components. Each macro transition P1 and P2 contains the process environment model
given in figure 3, but prefixed with the instance names P1 or P2, respectively. For a more systematic analysis
procedure (see section 5 and section 6), two versions of pushers are considered: without and with explicit error
states (too_near, too_far). In the initial state (marking), all relays are off, the pushers are in their basic positions,
and the plant is empty (contains no work piece).

4.2 Control Program Model

The pattern of the essential parts of the controller macro transitions (con1, con2) is given in Figure 4. The original
plc programs are written in IEC 1131-3 (see left part). These programs are (automatically) translated into ordinary
place/transition nets. For an example, how this could look like, consider the right side in Figure 4.

In order to avoid unnecessary restrictions of the concurrency degree, it could be helpful to exploit a special test
arc feature for modelling of the transitions’ side conditions. In that case, the amount of data, which has to be
searched through during the analysis steps, may become much smaller, provided the analysis tools are prepared to
handle test arcs.

4.3 Requirement Specification in Model Terms

Finally, the informally given requirement specifications have to be transformed into the terms of the formal
model.

(a) safety

• At any time, a pusher can be driven in one direction only:

(P2) ,

• To avoid collisions, it is not allowed to move adjacent pushers at the same time:

(P3)

• No pusher motion must be driven too far/near:

(P4) ,

(P5) ,

• While moving a pusher, a new work piece must not arrive in its input position:

(P6) ,

(b) progress

• After an active phase of a pusher, its successor will be activated before the predecessor will be started
again:

(P7)

• It is guaranteed that each pusher works infinitely often (livelock freedom), e.g. (en(t) stands for the con-
junction of all preplaces of t:

(P8) ,

• Any work piece entering the plant will finally leave the plant (which may be considered as a consequence
of (P7) and (P8)), i.e. in case of a two-pusher chain:

(P9)

Pi_too_near P+ i_basic Pi_norm Pi_ext Pi_too_far+ + +() 1=
.∨

AG Pi_too_near Pi_basic Pi_norm Pi_ext Pi_too_far.∨ .∨ .∨ .∨()

AG Pi_R1_on Pi_R2_on∧()¬() i∀

Pj_Ri_on Pk_Ri_on

i 1=

2

∑+

i 1=

2

∑
 
 
 
 
 

1≤ i∀ j k, j 1+:∀, , k=

AG Pi_too_near¬() i∀
AG Pi_too_far¬() i∀

AG posi_full Pi_basic→() i∀

AF Pi_norm Pi_ext∨()AU Pj_norm Pj_ext∨()¬())
AG Pi_norm Pi_ext∨ →()

i j, i 1+:∀, j=

AG AF en Pi_basic2norm()()() i∀

AG pos1_full AF pos3_full→()

4 / 6 mh@informatik.tu-cottbus.de

Title
On exploiting the analysis power of Petri nets for the validation of discrete event systems

LD R1_off
AND ext

LD R2_on
AND basic

LD R1_on
AND ext

LD R1_off
AND basic

start_moving

Step 1

Step 2

Step 3

Step 4
BOOL
N

R2_set_off

BOOL
N

R2_set_on

BOOL
N

R1_set_off

BOOL
N

R1_set_on

tr1

tr2

tr3

tr4

tr5R2_off R2_offtr5

start_moving

R1_off

basictr1

step1 R1_set_on

R1_set_offstep2

tr2 ext

R1_on

R2_on

basictr4

step4 R2_set_off

R2_set_onstep3

tr3

R1_off

ext

stop_moving

R2_on

R1_on

R1_off

R1_set_on R1_set_off

RELAY R1

RELAY R2

R2_set_offR2_set_on

PUSHER
with error states

R2_off

Figure 2: Top layer of a transportation system with two pushers.

pos3_free

pos3_full

pos2_free

pos1_full pos2_full

pos1_free

con2 consumercon1producer

Figure 3: Process environment model of each controller.

Figure 4: Part of the controller program and its Petri net model.

too_farF

too_nearF

basic2near

too_near too_far

ext2far

R2_on

R1_on

basic norm ext

basic2norm

norm2basic

norm2ext

ext2norm

P2P1

Drawing convention:
Shadowed nodes are so-called logical
(fusion) nodes. They serve as connec-
tors to avoid immoderate edge cross-
ing. All logical nodes with the same
name are logically identical.

stop_moving

Proc. 2nd IMACS Symposium on Mathematical Modelling (MATHMOD VIENNA ‘97), February 1997, pp. 171-176

97/05/29 5 / 6

5 Qualitative Analysis
We present a two-step analysis. At first, the pusher model without explicit error states is discussed in this section.
Afterwards, the error states are integrated leading to the notion of time (see section 6).

5.1 General Analysis

General analysis deals with properties which should be valid independently of the intended functional behaviour
of the system. Basically, these are boundedness and liveness.

boundedness: The net is covered by semi-positive place invariants (INA). Moreover, the token sum of all these
place invariants equals to 1. So we are able to conclude the 1-boundedness of the net (a necessary precondition for
PEP’s model checker).

liveness: The deadlock freedom can be proven efficiently by construction of stubborn set reduced reachability
graphs (INA, PROD), which are generally much smaller than the complete state space. Additionally, it can be
shown efficiently that the net is covered by semi-positive transition invariants as necessary (but not sufficient)
condition for liveness. But liveness (no dead system parts) can’t be proven by classical Petri net theory for longer
pusher chains, due to the lack of suitable net structures (the given nets are not Extended Simple, net reduction
does not help), and due to the state explosion by considering all interleaving transition sequences (reachability
graph). However, based on the branching processes’ prefix, for each transition the liveness has been proven (PEP)
by model checking the temporal formula: .

5.2 Special Analysis

(a) safety

There are different analysis techniques available to prove the unreachability of unsafe states (P2) - (P6):
Facts (INA): The unsafe states may be modelled as facts (special transitions which are expected to become

never enabled). But, the evaluation of bad states (a state where a fact is enabled) by the given tool kit requires the
reachability graph. That’s why we will avoid this approach.

Stubborn set reduction (INA): The net is transformed in such a way that the unsafe states become dead states.
Then the stubborn set reduced reachability graph has to be constructed. Because any dead states are preserved
under this reduction, the original net does not contain any unsafe states if the transformed net does not reach any
dead states. This technique could be useful if the required net transformation is done by the analysis tool.

Place invariants (INA): A sufficient condition for the unreachability of a given marking m is fulfilled if the
there exists at least one place invariant x for which the token conservation equation

is not valid. To check this equation, complete markings must be specified. But unsafe states are usually given in
terms of submarkings (containing “don’t care” places). This main disadvantage is overcome in the next approach.

Trap equation (PEP): Based on a linear upper approximation of the state space, a sufficient condition for
linear properties of the type has been introduced in [4]. The implementation is integrated in the latest
version of PEP. We use it to prove (P3).

Model checking of temporal formulae: Model checking, combined with stubborn set reduction (PROD,
LTL\X) or based on the finite prefix of branching processes (PEP, CTL0), provides generally the most convenient
method to raise safety questions, esp. because set of (unsafe) states may be characterized in a concise manner.
Both model checkers run very fast. Due to the evaluation method, they are applicable also to larger systems of
which the size of the interleaving state space is unknown.

(b) progress
(P7) - (P9) use a richer set of (temporal) logical operators. Therefore, model checking facilities are unavoidable.

Due to the AF and AU operators, these properties can be proven only by PROD. We use it to prove (P7) - (P9) for
any pusher chain.

(c) consistency
For any pusher chain, (P1) is analyzable by INA, and in the version of (P1*) by PROD or PEP. But for larger

systems, it is generally a cumbersome task to prove this type of properties by finding the suitable place invariants.
A summary on the analysis efforts necessary to gain the results mentioned above is given in the following table.

AG EF en t()()

x p() m0 p()⋅
p P∈
∑ x p() m p()⋅

p P∈
∑=

A m⋅ b≤

6 / 6 mh@informatik.tu-cottbus.de

Title
On exploiting the analysis power of Petri nets for the validation of discrete event systems

6 Quantitative Analysis
In case of explicit error states within the model (Pi_too_far, Pi_too_near), it has to be proven that a pusher, after
having reached the expected extension, is switched off fast enough. Obviously, we have now to take into consider-
ation also the timing behaviour of the given system.

In terms of interval Petri nets [6] this means that the error transitions modelling the pusher motions into unsafe
states (Pi_ext2far, Pi_basic2near) may be enabled, but will never fire due to the influence of time. Therefore, the
proof of the unreachability of explicit error states ((P4), (P5)) can be traced back to the proof that the related error
transitions are dead at the initial state.

This may e.g. happen because the transitions Ci_tr2 and Pi_R1_set_off (disabling Pi_ext2far) fire always before
Pi_ext2far is willingly to fire. Generally, a proof like that depends essentially on the chosen interval times (but can
be done by INA, at least as long as the reachability graph fits into memory). But in this concrete case, we are able
to conclude - by evaluating a suitable part of the reachability graph (or at best a non-interleaving version of it) -
that for any time intervals for which the relations

hold, the dangerous transitions Pi_ext2far will never fire. Similar relations hold for Pi_basic2near.

7 Conclusions
All qualitative (i.e. timeless) properties have been proven without construction of the reachability graph (inter-
leaving state space). Up to now, the quantitative (i.e. time-dependent) analysis of interval nets is based on reacha-
bility graph construction and evaluation. But in [8], a method has been proposed to describe the behaviour of
interval nets by a finite prefix of branching processes. It seems to be worth thinking over how to combine both
approaches. Nevertheless, all proves were carried out automatically by help of general Petri net analysis tools.
Therefore, they are reproducible in an objective way.

References
[1] BEST, E.; GRAHLMANN, B.: PEP - Programming Environment Based on Petri Nets, Documentation and User Guide; Univ. Hildesheim,

Institut für Informatik, Nov. 1995.
[2] HEINER, M.; DEUSSEN, P.; SPRANGER, J.: A Case Study in Developing Control Software of Manufacturing Systems with Hierarchical

Petri Nets; Proc. 1st Int. Workshop on Manufacturing and Petri Nets held at ICATPN ’96, Osaka, June ’96, pp. 177-196.
[3] HEINER, M.; POPOVA-ZEUGMANN, P.: Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets; BTU Cottbus, Dep.

of CS, Techn. Report I-02/1996, available on http://www.informatik.tu-cottbus.de.
[4] Melzer, S.; Esparza, J.: Checking System Properties via Integer Programming; ESOP ’96, Linköping, LNCS 1058, pp. 250-264.
[5] PED: http://www-dssz.Informatik.TU-Cottbus.De/~wwwdssz/ped.html.
[6] POPOVA-ZEUGMANN, L.: On Time Petri Nets; J. Information Processing and Cybernetics EIK 27(91)4, pp. 227-244.
[7] RAUSCH, M.; LÜDER; A.; HANISCH, H.-M.: Combined Synthesis of Locking and Sequential Controllers; Proc. WODES ’96, Edinburgh/

UK, Aug. 1996, pp. 133-138.
[8] SEMENOV, A.; YAKOVLEV, A.: Verification of Asynchronous Circuits Using Petri Net Unfolding; Proc. DAC ‘96, Las Vegas, June 1996,

pp. 59-63.
[9] STARKE, P. H.: INA - Integrated Net Analyzer; Manual, Berlin 1992.
[10] VARPAANIEMI, K. et al.: PROD Reference Manual; Helsinki Univ. of Technology, Digital Systems Laboratory, Series B: Techn. Report

No. 13, August 1995.

Table 1: Overview on analysis efforts.

a) 2 nodes (global states) and 2 arcs (labelled with semi-words of events), for any pusher chain.

pushers P / T R Rstub prefix (B / E) CAa) , events

1
2
3
4
5

24 / 21
42 / 38
60 / 55
78 / 72
96 / 89

88
464

3.088
18.848
118.624

22
42
79
133
204

96 / 45
213 / 99
366 / 170
555 / 258
780 / 363

26
45
82
119
173

6
7
8
9
10

114 / 106
132 / 123
150 / 140
168 / 157
186 / 174

738.368

4.614.208
?
?
?

292
397
519
658
814

1041 / 485
1338 / 624
1671 / 780
2040 / 953
2445 / 1143

228
299
372
460
551

lft Ci_tr2() eft Pi_ext2 far() lft Ri_set_off() eft Pi_ext2 far()<∧<

