
Jochen Spranger

FUNlite �

A parallel Petri Net Simulator

� Introduction

In the development of provably error�free control software for manufacturing systems the
application of Petri nets is a well�known approach� One of the main advantages of Petri nets
are their sound mathematical background which make it possible to analyse and validate
the qualitative and quantitative behavior of a Petri net system by formal methods� The
gap between the validated Petri net model and the needed control software can be closed by
directly synthesizing the control software form a Petri net speci�cation� One way to achieve
this� is to assign control code to the transitions and use a Petri net simulator to simulate
the token�ow of a Petri net�

We use save hierarchical Place�Transition nets to develop modularized control software
for manufacturing systems ��	� Each machine controller is modelled in a separate subnet�
Those subnets are connected by places which re�ect the communication between the con�
trollers�

For this kind of Petri nets we have realized a parallel Petri net simulator 
FUNlite��
especially designed for fast execution speed� low memory consumption and low communica�
tion overhead� In FUNlite we generate for each subnet a fast sequential Petri net simulator�
Each subnet simulator is mapped on a di�erent processor�

When simulating a Petri net system� the speed of the transition enabling test plays an
important role� In FUNlite the enabling test is highly simpli�ed by a method characterizing
the enabling of a transition at a given marking by a simple number comparison�

Communication places where a con�ict between subnets exists are administrated by the
lockset�method �
	 which is speeded up by an analogous number comparison technique�

The FUNlite system has been implemented on a Transputer system consisting of T
���
Transputers which are connected by C��� communication switches� The code is written
in INMOS C ��	 which is an extension of ANSI�C by the CSP model ��	 for parallel pro�
gramming� The main parallel features are processes� synchronous communication through
channels and semaphores�

This paper is organized as follows� Section � gives a short introduction in Petri nets�
Section � presents the simulation engine for the subnets� Section � and � show the internal
and external administration of communication places� Finally some conclusions are given�

� Basic Notations and De�nitions

De�nition � �Petri Nets� A Petri Net N � hP� T� F�m�i consists of

�� Finite� nonempty sets P and T such that P � T � �� Elements of P and T are called
places and transitions� respectively�

�� A mapping F � �P � T � � �T � P �� N�

�� A mapping m� � P � N� called the initial marking�



This kind of Petri net is also called Place�Transition Net� As usual we use the following
notations�

�� The pre� and postsets of a transition resp� of a place are given by �x � fy � P � T �
F �y� x� � �g and x� � fy � P � T � F �x� y� � �g�

�� For each transition t � T the mappings t�� t� � P � N are de�ned by t��p� �� F �p� t�
and t��p� �� F �t� p��

�� �t �� t� � t�

A marking of a Petri net is a function m � P � N� where m�p� denotes the number of
tokens in a place p� A transition t � T is enabled 
may �re� at a marking m i� t� 	 m


i�e� t��p� 	 m�p� for each place p � P �� When an enabled transition t at a marking m

�res� a new marking m� given by m��p� �� m��p� � �t�p� is reached� A Petri net is called
save i� m�p� 	 � for every p � P and every marking m reachable from the initial marking
m�� Two transitions t� t� � T are in con�ict i� they have common preplaces� We use
hierarchies as syntactical constructs to structure the Petri net into subnets� Each subnet
has a border of places� Those places are called communication places because they are
responsible for the connection between the subnets� The pre� and postplaces of a subnet
are those communication places which are pre� or resp� postplaces of a subnet transition�
Two subnets are in con�ict i� they have common preplaces�

For a more detailed introduction into Petri net theory we refer to e�g� ��	�

� The Petri net simulator FUNlite

For each subnet 
i�e� machine controller� we generate a sequential Petri net simulator� He is
divided in a data structure which represents the Petri net� functions of control code which
are assigned to the transitions and a simulation engine which plays the tokengame on the
data structure� When a transitions gets �red their assigned code is executed� The bene�ts
of a sequential Petri net simulator are�

� the overhead of process switching can get avoided� 
With one CPU there is anyway
only pseudo�parallelity possible��

� we do not have to synchronize the execution of transition code to keep it atomar�

� the resolution of con�icts can be done fast and simple�

One of the main problems when simulating a Petri net system is the speed of the transition
enabling test� In FUNlite we use a highly simpli�ed enabling test� where the enabling of a
transition at a given marking is indicated by a counter�

For each transition a counter is introduced which characterizes the �rability of this
transition� The counter of a transition t shows the number of unmarked preplaces of t� If
the counter of a transition t decreases to � the transition gets enabled� After the �ring of
a transition t� we only have to consider the transitions t� ��t�� and �t��� to determine the
set of new enabled transitions� For each transition t� in ��t�� we increase the counter of t�

by the number of common preplaces with transition t� For each transition t� in �t��� we
decrease the counter of t� by the number of common places between the preplaces of t� and
the postplaces of t�



Integer TransCounter��Transitions	�
Set of Transition EnabledTrans�
Transition t�

SimEngine�� f
Init�TransCounters� EnabledTrans��
repeat
t �� SelectEnabledTrans�EnabledTrans��
foreach t� � ��t�� do
Inc�TransCounters� t���
if Disabled�t�� TransCounters� then
EnabledTrans �� EnabledTrans n ft�g�

�
od
Fire�t��
foreach t� � �t��� do
Dec�TransCounters� t���
if Enabled�t�� TransCounters� then
EnabledTrans �� EnabledTrans � ft�g�

�
od

forever
g

Figure �� Sequential Simulation Engine

� Internal administration of communication places

In each subnet we introduce special code to connect the subnets through communication
places� We distinguish three di�erent cases�

Post communication places� For each post communication place of a subnet we generate
a process and an output channel� The process waits for an activation from the sequential
simulation engine and then starts to transmit a token through the output channel� The out�
put channel is connected to the administration process of the corresponding pre communica�
tion place� In introducing a separate process for token distribution we get an asynchronous
coupling between the sequential simulation engine and the subnet�to�external�place com�
munication� This results in a speed up of the token�ow animation because the sequential
simulation engine could not be blocked by synchronous channel communication� We want
to remark that the saveness assumption implies that one process per post communication
place is enough to handle the token distribution

Pre many�to�� communication places� This kind of places can have many presubnets
but only one postsubnet� They are mapped to the processor of the corresponding postsub�
net� For each place we generate a process which waits on its input channels for the arriving
of a token� Each input channel corresponds to an input arc� When a token arrives it gets
queued� Before the sequential simulation engine selects an enabled transition for execution



it clears the token queue and updates the transition counters of the subnet� Here we have
to remark that saveness assumption implies that there can be no blocking of a process that
wants to deliver a token to a subnet

Pre many�to�many communication places� This kind of places can have many pre�
subnets and many postsubnets� There exists a con�ict between the postsubnets� such there
exists no unique mapping of the communication place to a postsubnet� Therefore they get
extern administrated by special processes� For the interaction with those external processes
the sequential simulation engine have to be expanded� Transitions with pre many�to�many
communication places get 
pseudo� enabled if their counters are equal to the number of pre
many�to�many communication places� E�g� the �rability of such a transition only depends
on external places� The code for the selection of an enabled transition in the sequential
simulation engine has to be changed as follows�

L�� t �� SelectEnabledTrans�EnabledTrans��
if IsManyToManyTrans�t� then
if AskForTokens�t� �� not ok then
goto L� �

�
�

Figure �� Selection of an enabled transition

This is the only place in FUNlite where we use a polling technique�

� External administration of many�to�many comm� places

We have subdivided the many�to�many communication places in disjointed sets L 
so�called
locksets� �
	 such that holds�

� 
s� t � T with �s � �t contains many�to�many communication places
�� �l � L with l contains all many�to�many communication places of �s � �t

� �L� maximal

With the introduction of locksets we obtain a simple con�ict resolution and atomar alloca�
tion of more than one token� A lockset l is implemented by�

� For each Transition with a many�to�many communication place in l we introduce a
counter which represents the number of missing communication place tokens 
analo�
gous to the counter technique in the sequential simulation engine��

� For each place p in l we generate an input process which waits for an arriving token
on his input channels� If a token arrives it updates the counters of the corresponding
transitions�

� An administration process which reacts on token requests from the corresponding
subnets�

The changing of the counters by the input processes and the administration process is
synchronized by a semaphore�



Integer TransCounter��Transitions	�
Transition t�

repeat
t �� WaitForRequest���
if TransCounters�t	 �� � then
Send�ok��
Update�TransCounters� t��

else
Send�not ok��

�
forever

Figure �� Administration Process

	 Conclusion

We have developed a fast parallel Petri net simulator for save hierarchical Place�Transition
nets� It has been designed for fast execution speed� low memory consumption and low
memory overhead�

The key techniques are a fast and highly simpli�ed enabling test for transitions and a
speeded up con�ict resolution on communication places based on the lockset�method� This
approach can be easily extended to structurally bounded Petri nets ��	�

To evaluate the concepts behind the Petri net simulator we have implemented the FUN�
lite system on a T
��� Transputer system� We use our Petri net EDitor PED ��	 for the
construction of Petri nets annotated with control code� The generation of the code for the
Transputer system is fully automated�

As a medium�sized example we have used a Petri net model of a really existing production
cell in a metalprocessing plant ��	� The production cell consists of six components that
are organized in a 
closed� pipeline� The generated control software runs a simulation
environment of the production cell implemented with Tcl�Tk� The communication between
the control software and the simulation environment is based on a simple Input�Output
protocol� We use a master process to interact with the simulation environment to serialize
the simple I�O statements from the separate control processes�

In future we plan to design a special intermediate representation of the hierarchical
structured Petri net� In that way we will decouple the graphical frontend and the code
generation�

References

��� J� L� Briz and J� M� Colom� Implementation of Weighted Place�Transition Nets based on
Linear Enabling Functions� In Application and Theory of Petir Nets� LNCS ���� pages �����	�
���
�

��� G� Czichy� Design and Implementation of a Graphical Editor for Hierarchical Petri Net Models
�in German
� Diploma Thesis� TU Dresden � GMD�FIRST� Berlin� �����



��� Monika Heiner and Peter Deussen� Petri Net Based Qualitative Analysis � a Case Study� Techn�
Report I��	������ BTU Cottbus� Dep� of CS� �����

�
� Monika Heiner� Peter Deussen� and Jochen Spranger� A Case Study in Developing Control
Software of Manufactoring Systems with Hierarchical Petri Nets� In �st Int� Workshop of

Manufactoring and Petri Nets� Osaka� June �����

��� C� A� R� Hoare� Communicating Sequential Processes� Prentice�Hall� ��	��

��� INMOS Ltd�� SGS Thomson Microelectronics� T���� ANSI C Toolset� ���
�

��� C� Lewerentz and T� Lindner� Formal Development of Reactive Systems � Case Study Produc�
tion Cell� In LNCS ���� �����

�	� P� H� Starke� Analyse von Petri�Netz�Modellen� G� B� Teubner� Stuttgart� �����

��� Dirk Taubner� Zur verteilten Implementierung von Petrinetzen� Informationstechnik� ����
�����
���� ��		�

Autorenangabe�

Dipl��Math� Spranger� J�
Brandenburgische Technische Universit�t Cottbus
Postfach ����


D������ Cottbus
Tel� ��
�����
����	��
Fax� ��
�����
����	��
E�mail� jsp�informatik�tu�cottbus�de


