
Proc. EKA ‘97 (Entwurf komplexer Automatisierungssysteme), Braunschweig, May 1997, pp. 162-179

 97/05/29 1 / 18

Worst-case Analysis of Concurrent Systems with

Duration Interval Petri Nets

Abstract: This paper deals with computing the minimal and maximal execution
durations in a given concurrent control system in order to support dependability
engineering by assuring the meeting of prescribed deadlines. For that purpose, a new
type of time-dependent Petri nets - the Duration Interval Petri net - is introduced, and a
dedicated reachability graph is defined in a discrete way. Using this reachability graph,
shortest and largest time paths between two arbitrary states of the control system, and
by this way minimal and maximal execution times, can be computed.

Keywords: system validation, qualitative and quantitative analysis, performance
evaluation, worst-case analysis, time-dependent Petri nets, control systems.

1 Petri Net Based Methods to Improve System Dependability

Among those methods, which aim at the improvement of the dependability of any
system, different kinds of Petri net based validation techniques to avoid faults during
the development phase have attracted a lot of attention in the last decade. Within this
general framework various Petri net based methodologies of dependability
engineering have been outlined. At the beginning, only qualitative properties have
been discussed. But because of the crucial impact of performance on parallel or
distributed (shortly called concurrent) systems, special emphasis has been laid more

Louchka Popova-Zeugmann
Humboldt University

Dep. of Computer Science
Axel-Springer-Straße 54 a

D - 10099 Berlin
Tel.: (030) 20 18 12 73
Fax: (030) 20 18 12 87

popova@informatik.hu-berlin.de

Monika Heiner
Brandenburg University of Technology

Dep. of Computer Science
Karl-Marx-Straße 17

D - 03013 Cottbus
Tel.: (0355) 69 38 85
Fax: (0355) 69 38 30

mh@informatik.tu-cottbus.de

2 / 18 mh@informatik.tu-cottbus.de

Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets

and more on incorporation of performance criteria as part of the system development
cycle [Balbo 92], [Heiner 94], [Donatelli 94]. Moreover, some situations are well-
known in different kinds of hard real-time systems, making worst-case analysis
unavoidable. E.g. if a process is caught in a livelock (i.e. blocked for longer than some
critical time period), it may have the same consequences as if it were involved in a
deadlock (i.e. blocked for ever).

Therefore, maybe the most important advantage of the Petri net approach to
dependability engineering is its ability to combine qualitative analysis, monitoring and
testing as well as quantitative analysis (in terms of performance/reliability prediction
and worst-case analysis) on the basis of a common Petri net-based intermediate
representation of the concurrent system under development.

Different validation methods may require net models which vary partly in their level
of abstraction. This variety comprises of course typical quantitative parameters as
delay or branching information (which are obviously necessary in case of quantitative
analysis), but also the granularity of considered control and/or data flow, i.e. the
degree of details concerning structural information. Therefore, in order to integrate
qualitative as well as quantitative analysis on a common intermediate system
representation, an important feature of a related methodology is the ability of a
controlled structural reduction, combined with compression of any quantitative
parameters.

In [Heiner 95], a method is demonstrated how to develop at first qualitative models as
place/transition nets suitable for analysis of general and special qualitative properties.
Afterwards, the validated qualitative models are transformed step-by-step by
quantitative expansion and property-preserving structural compression into
quantitative models as Markovian object nets [Wikarski 95] for performance
prediction.

Based on this experience, the approach to integrate different methods on a common
representation is extended by a formal method to derive Petri net models suitable for a
structure-oriented worst-case prediction of the system’s timing behaviour. For that
purpose, we are going to introduce a dedicated kind of time-dependent Petri nets.

Proc. EKA ‘97 (Entwurf komplexer Automatisierungssysteme), Braunschweig, May 1997, pp. 162-179

 97/05/29 3 / 18

The choice of a net type, at best suitable for a given validation task, should be guided
by the well-known engineer’s basic principle to keep everything as simple as possible.
So the answer to the question, which net type should be chosen, depends on the
properties to be validated (compare Figure 1). As long as there are hard deadlines to

context checking by
Petri net theory

verification by
temporal logics

performance
prediction

reliability
prediction

PETRI NETS

PLACE/TRANSITION

(COLOURED PN)

TIME-DEPENDENT PETRI NETS

NON-STOCHASTIC

STOCHASTIC

PETRI NET

PETRI NET

PETRI NET

worst-case
evaluation

Figure 1: Relation of model classes & validation tasks.

4 / 18 mh@informatik.tu-cottbus.de

Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets

meet definitely, as it should be the case for systems with predictably timing behaviour,
the exact evaluation by non-stochastic nets is unavoidable. Only when average values
or probability distributions of performance measures like load, throughput, utilization
etc. are wanted, then the application of stochastic Petri nets becomes useful.

The presented approach to worst-case analysis by time-dependent nets is intended to
be part of a general framework of Petri net based dependability engineering, starting
with qualitative analysis using place/transition nets (or coloured nets as their short-
hand notation), and ending up finally in reliability prediction using stochastic nets
[Heiner 95].

2 A Petri Net Based Method for Worst-case Timing Prediction

We are now going to extend the approach to integrate different methods on a common
representation by proposing a new kind of time-dependent Petri nets especially
dedicated to worst-case prediction of a system’s timing behaviour. According our
analysis objective, we will restrict ourself in the following to discuss only non-
stochastic Petri nets.

A search through the literature reveals a lot of different time-dependent Petri net
classes, which differ essentially in the provided time concepts. For a concise summary
see [Starke 95]. Due to our modelling procedure of control systems, which maps any
atomic sequential parts to transitions, time consumption should be connected with
transition firing. Among those, the most important time-dependent net classes are the
following:

• duration nets (usually called timed nets) [Ramchandani 74]:
constant delays with non-preemptive firing principle,
firing consumes time,
earliest firing rule realized by maximal step strategy;

• interval nets (usually called time nets) [Merlin 74]:
interval delays with preemptive firing principle,
firing itself happens timeless,
latest firing rule realized by single step strategy.

Proc. EKA ‘97 (Entwurf komplexer Automatisierungssysteme), Braunschweig, May 1997, pp. 162-179

 97/05/29 5 / 18

The firing of a transition on model level corresponds to the execution of the actual
atomic sequential system part mapped to it. Generally, such an execution cannot be
interrupted again after being initiated (in case of modelling systems without timers,
interrupts etc.). So, the non-preemptive firing principle is the natural way to express
the system’s execution progress. On the other side, execution times cannot generally
be characterized adequately by constant delays because of data dependencies,
operating system’s influences or measurement deviations. Moreover, an adequate
model for worst-case prediction of the timing behaviour should be able to determine
exactly the minimal and maximal time consumption of critical system parts. So what
we really need for our purposes is a suitable combination of the properties listed above
- interval delays, as used in interval nets, and non-preemptive firing rule, as used in
duration nets. That leads us to introduce a corresponding new time-dependent Petri
nets - the Duration Interval Petri nets. For a formal definition of the corresponding net
type see section 3.2.

In the following, the quantitative parameters are time intervals of the minimal and
maximal duration to execute a given (sequential) part without resource limitations (no
processor sharing, no communication delays, etc.). Of course, the interval may
collapse to a constant duration in case of purely linear, non-interrupted control
statement sequences. These execution time intervals can be measured by monitoring
tools of the development environment, or - in special cases - calculated from machine
instruction sequences. In the worst case, they have just to be assessed.

The model, which we need for the evaluation to be done, should not be built from the
scratch, but instead of this, the timing model should be derived to a high degree
automatically from that net models which we do have due to our qualitative analysis
efforts done. Because we already know, how to model control systems by
(place/transition) Petri nets [Heiner 95], [Heiner 96b], we have then altogether a
formal method to derive systematically Petri net models suitable for worst-case
prediction of the concurrent control system under development. For more details of
the total framework, comprising different methods and tools, see [Heiner 96a].

The method proposed for worst-case analysis consists basically of two components:

• a set of reduction rules describing the allowed structural reductions and the
corresponding transformation rules of the quantitative parameters within any well-
structured (sequential) substructures (see Figure 2), and

6 / 18 mh@informatik.tu-cottbus.de

Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets

i k

j

ti k, a b,[]=

tk j, c d,[]=

i

i

j

ti j, c d,[]=

ti i, a b,[]=

j

i j

Figure 2: Structural compression
within well-structured
(sequential) parts.

t'i j, a b,[]=

t''i j, c d,[]=

ti j,

ti j, ma c+ nb d+,[]=

ti j, min a c,() max b d,(),[]=

ti j, a c+ b d+,[]=

m - lower bound

n - upper bound
of iterations

i i2

j1i1
ti a b,[]=

j

t'i1 j1, c d,[]=

t''i2 j2, e f,[]=

j2

t j g h,[]=
ti, j = [a + max(c, e) + g,

b + max(d, f) + h]
ti j, =

Proc. EKA ‘97 (Entwurf komplexer Automatisierungssysteme), Braunschweig, May 1997, pp. 162-179

 97/05/29 7 / 18

• a method to compute the execution interval of any (non-sequential) system part,
including an arbitrary net structure, by length determination of the shortest and
largest paths between the corresponding (begin and end) states of the reachability
graph (see section 3.3).

If the structural reduction abstracts of cycles, we need the lower and upper bounds of
cycle iterations in order to be able to calculate the new time interval. In case of control
software worst-case analysis, we can extract the necessary iteration bounds from the
corresponding loop statements - provided they are static ones. But this is a well-known
unavoidable restriction for systems with high dependability demands which require
predictably timing behaviour (see e.g. [Kopetz 95], [Vrchoticky 94]). The total
execution time interval of given software can be immediately picked up from the
reduced Petri net in case of well-structured (sequential) programs which have been
completely reduced to1)

Generally, in case of concurrent control systems, the time interval has to be evaluated
by a suitable Petri net evaluation tool (we use INA, lately updated according the
method proposed here). But a structural reduction combined with compression of
quantitative parameters, done before as strong as possible, may reduce the
computational costs essentially.

3 Mathematical Background

3.1 Basic Notations and Definitions

We will use the following notations. N denotes the set of natural numbers, N+ is N \
{0}. Q0

+ is the set of nonnegative rational numbers.

Definition 1:

The structure PN = (P, T, F, m0) is called Petri net, iff:

1) In case of “loop forever”-programs, begin and end places coincide.

begin end[tmin, tmax]

8 / 18 mh@informatik.tu-cottbus.de

Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets

(1) P, T are finite sets, and F is a mapping

F: , indicating arc weights.

We define , and we assume

, , and

(2) m0: P (initial marking)

A marking of a PN is a function m: P N, where m(p) denotes the number of tokens
in place p. The pre- and postsets of a transition t resp. of a place p are given by

and resp.
 and .

Each transition induces the marking t- and t+, defined as t-(p) := F (p, t) and
t+(p) := F (t, p). By we denote t+- t-. A transition is enabled (may fire) at a
marking m iff t- (i.e. t-(p) for each place). When an enabled
transition t at a marking m fires, a new marking given by
is reached.

3.2 Duration Interval Petri Nets

In order to design and analyze such systems as given above, we define a new kind of
time dependent Petri nets where the firing of each transition costs time. Generally, this
time cannot be given as a fixed number but it ranges arbitrarily between a minimal and
a maximal value. For that reason we will call these nets Duration Interval Petri nets
(DIPN). The DIPN are classical Petri nets where to each transition t two nonnegative
rational numbers at and bt (at bt) are associated; at is the minimal possible value of
the firing duration of t, and bt is the maximal possible value. The times at and bt are
relatively to the moment at which t was enabled last. When the transition t becomes
enabled it starts firing immediately, provided any dynamic conflict1) is resolved to its
favour. The conflict resolution policy is as usual as in classical Petri nets, i.e. there is a
free choice among the enabled transitions.

The firing rule can be basically considered as a 3-phase firing:

1) Two transitions are in a dynamic conflict at the marking m, if both transitions are enabled at m, but
the firing of one transition disables the other one (comp. [Starke 90]).

P T×() T P×()∪ N→
X P T∪:=

P T∩ ∅= P T∪ ∅≠
x X y X F x y,() 0≠ F y x,() 0≠∨:∈∃:∈∀

N→

→

Ft p p P∈ F p t,() 0≠∧{ }:= tF p p P∈ F t p,() 0≠∧{ }:=
F p t t T∈ F t p,() 0≠∧{ }:= pF t t T∈ F p t,() 0≠∧{ }:=

t T∈
∆t t T∈

m≤ m p()≤ p P∈
m' m' p() m p() ∆t p()+:=

≤

Proc. EKA ‘97 (Entwurf komplexer Automatisierungssysteme), Braunschweig, May 1997, pp. 162-179

 97/05/29 9 / 18

• The tokens are removed from the input places when a transition starts working
(firing).

• The transition holds the token(s) while working (time elapse).

• The tokens are put into the output places when a transition finishes working.

The token transfer itself does not consume any time.

To illustrate the firing behaviour in more detail, let’s consider two examples.

Example 1:

Example 2:

In Net 1, only one of the transitions t3 and t4 can and will fire (after firing of t2). In Net
2, after the firing of the transition t5, the place p6 gets two tokens. Both transitions t6
and t7 fire immediately (t6 and t7 are in static conflict1), but not in a dynamic one). In
Net 3, transition t9 and t10 are in a dynamic conflict, but the situation is another one as
in the Net 2. Assume that the conflict between t9 and t10 is solved in favour of
transition t9, then after one time unit, the token, which is situated in place p8 will move
to place p9. Since transition t9 is still firing (but has not finished, yet), transition t10
starts to fire (one time unit later then t9).

1) Two transitions t1, t2 are in a static conflict, if they share preplaces, i.e.
(comp. [Starke 90]).

Assuming that t1 becomes enabled at time c, then t1 starts to fire at
this moment and it finishes at the earliest at c + 2 and at the latest at
c + 4, or it finishes at an arbitrary (not necessarily integer) moment
between c + 2 and c + 4.

t1p1
[2,4]

t4t3

t2

p4

p3

p2

[2,4]

[1,1]

[3,5]

Net 1:

t7t6

t5

p7

p6

p5

[2,4]

[1,1]

[3,5]

Net 2:

t10t9

t8

p10

p9

p8

[2,4]

[1,1]

[3,5]

Net 3:

2

Ft1 Ft2∩ ∅≠

10 / 18 mh@informatik.tu-cottbus.de

Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets

As demonstrated with Net 2 and Net 3, multiple firing of a transition (concurrently to
itself) is not allowed, as usual in time-less Petri nets. Moreover, in the context of
software-based system modelling this assumption reflects the fact that at any time only
one process can run over a certain piece of hardware or software, resp.

Definition 2:

The structure D = (P, T, F, m0, DI) is called Duration Interval Petri Net (DIPN)

iff:

(1) (P, T, F, m0) is a Petri net (skeleton of D),

(2) DI: T Q0
+ Q0

+ and for each holds , where

.

The skeleton of D, the classical Petri net, we denote by S(D). DI is the time function of
D. at is called the shortest duration time of t (sdt(t)), and bt is called the largest
duration time of t (ldt(t)), resp.

Please note, immediate transitions are included in our time model, although in reality
nothing happens timeless. Immediate transitions help to keep interval boundaries
small. Often, system activities may be classified into activities with significant time
consumption and those with non-significant (much less) time consumption. Without
immediate transitions, this difference had to be modelled by an appropriate (possibly
quite large) absolute difference of duration times. With immediate transitions, all
duration times may be scaled down relatively to a suitable time axis.

The price for that advantage is the danger of time deadlocks, i.e. of system situations
without any time progress because no state is reachable where the system clock is able
to advance. Obviously, the appearance of time deadlocks corresponds to inconsistent
time constraints. Therefore, their (at best static) analysis is unavoidable [Starke 96].

Obviously, it is easier to study DIPN whose sdt’s and ldt’s are natural numbers. The
net behaviour of an arbitrary DIPN can be traced back, without restriction of
generality, to a similar DIPN with natural numbers as lower and upper bounds for the
time durations. Thus, in the following we always consider DIPN, whose time function
DI is defined in N N, i.e. the sdt and the ldt of each transition are natural numbers.

→ × t T∈ at bt≤
DI t() at bt,()=

×

Proc. EKA ‘97 (Entwurf komplexer Automatisierungssysteme), Braunschweig, May 1997, pp. 162-179

 97/05/29 11 / 18

An arbitrary situation in a given “classical” Petri net is completely described, if the
number of tokens in each place in the net, i.e. the marking is known. This knowledge
only is not enough for a DIPN. For a given marking we can determine which
transitions are enabled and which transitions are disabled. But, for an enabled
transition we cannot get any information about how many time is elapsed since the
transition became enabled last. Therefore we need a carrier for the time information of
each transition. Thus we define a time vector with as many components as transitions
in the DIPN, we consider. The components of the time vector are (positive) rational
numbers or a special sign - the sharp #. The sharp # means that the corresponding
transition is not firing. The value zero shows that the corresponding transition is just
about to finish its firing. For a firing transition, the corresponding component of the
time vector in a given situation is a rational number, which shows how many time has
still to elapse until this transition will stop its firing.

For example, we consider Net 3 again: The time vector tv := (#, 1.7, 0.5) shows that
the transition t8 is not firing, transition t9 and t10 are firing - t9 needs still 1.7 time units
and t10 needs still 0.5 time units, resp.

The pair (marking, time vector) gives enough information about any situation in a
given DIPN at each moment. Thus, this pair, here called state, is now the basic notion
in our time-dependent Petri net.

Definition 3:

Let D = (P, T, F, m0, DI) be a DIPN, tv: T Q0
+ {#}, and m be a marking in

S(D). Then the pair z := (m, tv) is called a state in D.

(Of course, not any state (m, tv) in D is an actually reachable one.)

The state z0 := (m0, tv0), with tv0(t) := # for all transitions, is called the initial state of
the DIPN D. For example, the initial state in Net 1 is

→ ∪

z0 = ((1, 0, 0), (#, #, #)) .

initial marking initial time vector

12 / 18 mh@informatik.tu-cottbus.de

Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets

The situation in a DIPN changes, when a transition fires or by time elapse. As already
mentioned, we demand that each enabled transition starts firing immediately, possibly
by solving dynamic conflicts. This means, our firing strategy is the “maximal step”,
i.e. a maximal set of concurrent enabled transitions is firing or/and starts firing. A
maximal step may be empty if the state is transient. In this case, time is elapsed only.

Definition 4:

A set U of transitions is said to be a maximal step in the state z = (m, tv) of a

DIPN, iff

(1) ,

(2) when , then # for at least one ,

(3) and

(4) there does not exist a set , and satisfies (1), (2) and (3).

(Condition (2) means that the empty set is a maximal step, if there are transitions

firing at that moment.)

In order to lay down formally the behaviour of DIPN’s we have to answer the
question: what is (are) the possible successor(s) of a given state in a given DIPN, when
a transition or maximal step of transitions is firing or/and when a certain time is
elapsed? Because the firing duration of each transition is not a fixed number, but
ranges between a given interval, the successor of the given state will vary, i.e. we get
more than one successor - in general a huge amount of successor states.

Definition 5: (Firing)

Let z = (m, tv) be a state of a DIPN, i.e.

m : P

tv : T Q0
+ {#}, where

tv(t) = # iff t is not firing, and

tv(t) = τ iff t is firing, and t finishes the firing after τ time units.

Then iff

(1) U is a maximal step in z.

U U z() t t- m tv t() #=∧≤{ }:=⊆

U ∅= tv t() ≠ t T∈

U - t-

t U∈
∑:=

 m≤

U' U U'⊂ U'

N→
→ ∪

m tv,() m' tv',()→U

Proc. EKA ‘97 (Entwurf komplexer Automatisierungssysteme), Braunschweig, May 1997, pp. 162-179

 97/05/29 13 / 18

(2)

(3) if then

if then .

And iff

(1)

(2) if then and

if then and

How can we interpret this definition? We assign to each transition in the net an “egg
timer”. The timer does not work () at the marking m if t is disabled at m. If
t has just become enabled at m, it starts firing immediately, i.e. the tokens are removed
from all its preplaces, and its timer is started to count down. At the beginning, the
timer shows a possible duration (within the given time interval) of t. At each moment,
while the timer is running, it shows how many time has still to elapse until the
transition t will finish firing. If the timer reaches zero, t stops firing, and the tokens are
put to all its postplaces.

Using this rule of state changes, the state space could be generated for a given DIPN
starting with the state z0 := (m0, tv0). But before implementing a new tool, we want to
gather experience of the usefulness of the newly introduced net type. So (as short-term
solution), we transform the DIPN into another well studied net type(s) with analysis
tool(s) already available.

m' m U -–:=

t U∉ tv' t() tv t():=

t U∈ sdt t() tv' t() ldt t()≤ ≤

m tv,() m' tv',()→τ

τ τ z() min tv t() tv t() #≠{ }:=≤

τ τ z()< m' m:=

tv' t() :=
tv t() τ–

, else

, tv (t) ≠ #

,

τ τ z()= m' m t+

tv t() τ z()=
∑+:=

tv' t() :=
tv t() τ–

,

, else

tv t() # tv t()∨ τ z()= =

.

tv t() #=

14 / 18 mh@informatik.tu-cottbus.de

Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets

3.3 Transformation into Interval Petri Nets

In order to analyze a DIPN, we translate it into an interval Petri net1). We do this
because:

• the interval nets are already well studied (comp. [Popova 91]),

• there exists a tool for qualitative and quantitative analysis of interval nets, INA
[Starke 92],

• the transformation is easy to manage.

The transformation adds two places and one immediate transition for each transition
(involved in a structural conflict) of the original net, according the pattern given in
Figure 3. Therefore, DIPN may be considered as an abbreviation of that structural
subset of interval nets in which only immediate transitions are allowed to be in
conflict, if any. But, this transformation blowing up the net structure does not enlarge
the qualitative state space. Thus, we can compute a reachability graph for the given
DIPN following the method to construct a reachability graph for interval nets
presented in [Popova 91]. The nodes of this reachability graph are the „essential“, so-

1) Similar considerations may be made for duration Petri nets.

a b,[]

c d,[]

a b,[]0 0,[]

c d,[]0 0,[]

with token reservation

without token reservation

duration interval Petri net interval Petri net

Figure 3: Transformation pattern from DIPN to interval nets.

i j i j

Proc. EKA ‘97 (Entwurf komplexer Automatisierungssysteme), Braunschweig, May 1997, pp. 162-179

 97/05/29 15 / 18

called integer states in the net, where all components of the corresponding time vector
are integers or #. Obviously, this reachability graph includes only a discrete part of all
the situations, which are possible in a given DIPN. But the knowledge of the net
behaviour in the integer states is sufficient for knowing the whole behaviour of the net,
and the computation of the integer states is much easier to manage. For more details
see [Popova 91].

Using this discrete reachability graph, we can analyze the DIPN in quality
(boundedness, deadlock freedom, liveness, etc.) as well in quantity (including
freedom of time deadlocks). Moreover, it has been shown that the time shortest and
the time largest path between two reachable states resp. markings can be determined
using the discrete reachability graph only. In order to be able to do it, it has been
proven that the solution of the corresponding Linear Program, which is of the
following type

is always an integer. Please note, this Linear Program has never to be solved for a
given net. It is only used within the proof to show the non-existence of non-integer
solutions. Therefore, minimal and maximal durations of certain paths can be
computed using the discrete reachability graph only. (In case of computing the time
largest path we disregard possible cycles. But for our applications this is not a
restriction, see section 2).

In opposite to that, the interval net analysis method introduced in [Berthomieu 91],
[Aalst 92] is directly based on the solution of inequality systems. Obviously, their
approach is quite laboriously in comparison with our discrete way of construction.

min / max t1 + ... + tn
+ ...+

...
+ ...+

))

b1 a11t1≤ a1ntn c1≤

bm am1t1≤ amntn cm≤

aij 0 1,{ } bi N ci N∈,∈,∈

i s k 1 i n≤ ≤ 1 s k m ∧≤ ≤ ≤∧(∀∀∀
ais aik 1== j(∀→ s j k≤ ≤ aij 1=→

(LP)

16 / 18 mh@informatik.tu-cottbus.de

Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets

4 Final Remarks

A new type of time-dependent Petri net has been introduced to model and analyze in a
straightforward manner concurrent control systems, which require predictably timing
behaviour. The new time model allows more compact system descriptions as it would
be the case using interval nets, and more precise one as under the restriction to
duration nets. In Duration Interval Petri nets, transition firing consumes time, while
the firing times are given by lower and upper bounds. This net type allows to compute
execution durations (of the whole system or of interesting system parts) in the best and
the worst case.

Up to now, this computation is done by transforming the net models of the newly
introduced net type into interval Petri nets, which are well-investigated and computer-
aided analyzable by already existing tools. This transformation adds for each
transition two places and one immediate transition to the original user net, resulting
possibly in states, which are transient from the user’s point of view. Therefore, in order
to increase user friendliness of the analysis tools provided it would be helpful to
analyze Duration Interval Petri nets in a direct way, without blowing up the net
structure.

These results have been applied to a medium-sized reactive system, a production cell
of a metal processing plant [Heiner 96b]. Modelling the controlling system and the
controlled process environment by Duration Interval Petri nets and assuming given
time intervals for the elementary mechanical motion steps, we are now able to
compute the worst case of the controlling system’s execution time with the (latest
update of the) software package INA [Starke 92].

On-going investigations to improve the presented approach to worst-case system
analysis deal with the following two problems. (1) In order to take advantage from the
results of qualitative analysis which should always preceed any kind of quantitative
analysis, it is necessary to investigate carefully the influence of time on qualitative
properties, e.g. to characterize time-independently live net structures. (2) Any kind of
reachability graph based analysis is limited in practice due to the well-known state
explosion problem. At least for 1-bounded DIPN the definition of an appropriate
partial order behaviour description should be possible.

Proc. EKA ‘97 (Entwurf komplexer Automatisierungssysteme), Braunschweig, May 1997, pp. 162-179

 97/05/29 17 / 18

Acknowledgment

We would like to thank Peter H. Starke for his immediate compliance with our wishes
by extending INA with algorithms for largest paths search and by provision of an
algorithm to transform duration interval Petri nets to interval Petri nets. Without his
support, the practical scrutiny of our approach would not have been possible in such a
short time period.

References

[Aalst 92] Aalst, W.M.P van der: Timed Coloured Petri Nets and their
Application to Logistics; Diss. Tech. Univ. Eindhoven, 1992.

[Balbo 92] Balbo, G.: Performance Issues in Parallel Programming; LNCS
616, 1992, pp. 1-23.

[Berthomieu 91] Berthomieu, B.; Diaz, M.: Modeling and Verification of Time
Dependent Systems Using Time Petri Nets; IEEE Trans. on
Software Egineering 17(91)3, 259-273.

[Donatelli 94] Donatelli, S. et al.: Use of GSPNs for Concurrent Software
Validation in EPOCA; Information and Software Technology
36(94)7, 443-448.

[Heiner 94] Heiner, M.; Ventre, G.; Wikarski, D.: A Petri Net Based
Methodology to Integrate Qualitative and Quantitative Analysis;
Information and Software Technology 36(94)7, 435-441.

[Heiner 95] Heiner, M.: Petri Net Based Software Dependability Engineering;
Tutorial Notes, Int. Symposium on Software Reliability
Engineering, Toulouse, Oct. 1995, 101 p., available also via
http://www.informatik.tu-cottbus.de.

[Heiner 96a] Heiner, M.; Popova-Zeugmann, L.: Worst-case Analysis of
Concurrent Systems with Duration Interval Petri Nets; BTU
Cottbus, Techn. Report I-02/1996, February 1996, available also
via http://www.informatik.tu-cottbus.de.

[Heiner 96b] Heiner, M.; Deussen, P.: Petri Net Based Design and Analysis of
Reactive Systems; Proc. Workshop on Discrete Event Systems
(WODES ’96), Edingburgh, August 1996, pp. 308-313.

18 / 18 mh@informatik.tu-cottbus.de

Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets

[Kopetz 95] Kopetz, H.: The Time-Triggered Approach to Real-Time System
Design; in Randell, B.; Laprie, J.-C.; Kopetz, H.; Littlewood, B.
(eds.): Predictably Dependable Computing Systems, Springer
1995, pp. 53-66.

[Merlin 74] Merlin, P.: A Study of the Recoverability of Communication
Protocols; Univ. of California, Computer Science Dep., PhD
Thesis, Irvine, 19974.

[Popova 91] Popova, L.: On Time Petri Nets; J. Information Processing and
Cybernetics EIK 27(91)4, 227-244.

[Ramchandani 74] Ramchandani, C.: Analysis of Asynchronous Concurrrent Systems
Using Petri Nets; PhD Thesis, MIT, TR 120, Cambridge (Mass.),
1974.

[Starke 90] Starke, P. H.: Analysis of Petri Net Models (in German); B. G.
Teubner Stuttgart 1990.

[Starke 92] Starke, P. H.: INA - Integrated Net Analyzer; Manual; Berlin 1992.

[Starke 95] Starke, P. H.: A Memo On Time Constraints in Petri Nets;
Humboldt-University zu Berlin, Informatik-Bericht Nr. 46, August
1995.

[Starke 96] Starke, P. H.: On State-Invariants of Timed Petri Nets; Humboldt-
University zu Berlin, Informatik-Bericht Nr. 59, April 1996.

[Vrchoticky 94] Vrchoticky, A.: The Basis for Static Execution Time Prediction;
Technical University of Vienna, PhD Thesis, 1994.

[Wikarski 95] Wikarski, D.; Heiner, M.: On the Application of Markovian Object
Nets to Integrated Qualitative and Quantitative Software Analysis;
Fraunhofer ISST, Berlin, ISST-Berichte 29/95, Oct. 1995.

