
10 / 10 mh@informatik.tu-cottbus.de

Heiner: Petri Net Based System Analysis without State Explosion

Mathematical Modelling (MATHMOD VIENNA ’97), Wien,
February 1997, ARGESIM Report No. 11, pp. 171-176.

HEINER, M.; POPOVA-ZEUGMANN, L. 1997b.
Worst-case Analysis of Concurrent Systems with Duration Interval
Petri Nets, in E. Schnieder and D. Abel (eds.), Proceedings 5th EKA
‘97, Braunschweig, pp. 162-179. 1997.

HEINER, M. 1997c.
Verifaction and Optimization of Control Programs by Petri Nets
without State Explosion; Proc. 2nd Int. Workshop on Manufacturing
and Petri Nets held at Int. Conf. on Application and Theory of Petri
Nets (ICATPN ’97), Toulouse, June 1997, pp. 69-84.

HEINER, M.; POPOVA-ZEUGMANN, L. 1997d.
On Integration of Qualitative and Quantitative Analysis of
Manufacturing Systems Using Petri Nets; Proc. 42. Int.
wissenschaftliches Kolloquium (IWK ’97), Ilmenau, September
1997, TU Ilmenau, Vol. 1, 557-562.

HEINER, M.; DEUSSEN, P.; SPRANGER, J. 1998.
A Case Study in Developing Control Software of Manufacturing
Systems with Hierarchical Petri Nets; in Int. Journal of Advanced
Manufacturing Technology, special issue on Petri Net Applications
in Advanced Manufacturing Systems, to appear summer 1998.

KEMPER, P. 1997.
Superposition of Generalized Stochastic Petri Nets and its Impact on
Performance Analysis; PhD Univ. Dortmund, Dep. of CS; Krehl
Verlag 1997.

KEMPER, P.; LÜBECK, R. 1998.
Model Checking Based on Kronecker Algebra; private
communication.

LAUTENBACH, K.; RIDDER, H. A. 1995.
Completion of the S-invariance Technique by Means of Fixed Point
Algorithms; Fachbericht Informatik 10/95, Univ. Koblenz-Landau,
1995.

LEWERENTZ, C.; LINDNER, T. 1995.
Formal Development of Reactive Systems - Case Study Production,
LNCS 891, Springer, 1995.

MCMILLAN, K. L. 1992a.
The SMV System, Techn. Report, Carnegie-Mellon Univ. 1992;
http://www.cs.cmu.edu/~modelcheck/smv.html.

MCMILLAN, K. L. 1992b.
Using Unfoldings to Avoid the State Explosion Problem in the
Verification of Asynchronous Circuits; Proc. of the 4th Workshop on
Computer Aided Verification, Montreal 1992, 164-174.

MCMILLAN, K. L. 1993.
Symbolic Model Checking, Kluwer Academic Publishers, Boston
1993.

MELZER, S.; ESPARZA, J. 1996.
Checking System Properties via Integer Programming; Proc. ESOP
’96, Linköping, LNCS 1058, 250-264.

MOON, I. 1992.
Automatic Verification of Discrete Chemical Process Control
Systems; PhD Carnegie Mellon Univ., Dep. of Chemical
Engineering, August 1992.

MURATA, T. 1989.
Petri Nets: Properties, Analysis and Applications; Proc. of the IEEE
77(89)4, 541-580.

PETERSON, J. L. 1981.
Petri Net Theory and the Modeling of Systems, Prentice-Hall,
Englewood Cliffs, N.J., 1981.

PROBST, S. T. 1996.
Chemical Process Safety and Operability Analysis using Symbolic
Model Checking, Ph. D. Thesis, Carnegie Mellon Univ., Dep. of
Chemical Engeneering, 1996.

RAUSCH, M.; LÜDER; A.; HANISCH, H.-M. 1996.
Combined Synthesis of Locking and Sequential Controllers; Proc.
WODES ’96, Edinburgh, Aug. 1996, pp. 133-138.

REISIG, W. 1985.
Petri Nets; An Introduction; EATCS Monographs on Theoretical
Computer Science Vol. 4, Springer 1985.

SEMENOV, A.; YAKOVLEV, A. 1996a.
Verification of Asynchronous Circuits Based on Time Petri Net
Unfolding; Proc. 33rd ACM/IEEE Design Automation Conf. (DAC
‘96), Las Vegas, June 1996, 59-63.

SEMENOV, A.; YAKOVLEV, A. 1996b.
Contextual Net Unfolding and Asynchronous System Verification;
Techn. Report 572, Univ. of NewCastle upon Tyne, Dep. of CS; Dec.
1996.

SPRANGER, J. 1997.
“FUNLite - A Parallel Petri Net Simulator”, Proc. 42. Int.
wissenschaftliches Kolloquium (IWK ’97), Ilmenau, September
1997, TU Ilmenau, Vol. 1, 563 - 568.

STARKE, P. H. 1990.
Analysis of Petri Net Models (in German); Teubner, Stuttgart 1990.

STARKE, P. H.; ROCH, S. 1997.
INA - Integrated Net Analyzer Version 1.7, Manual (in German);
Humboldt Univ. at Berlin, April 1997; http://www.informatik.hu-
berlin.de/~starke/ina.html.

TIEDEMANN, R. 1997.
PED - Hierarchical Petri Net Editor, Manual (in German); BTU
Cottbus, Dep. of CS, Techn. Report, May 1997; http://www-
dssz.Informatik.TU-Cottbus.De/~wwwdssz/ped.html.

VALMARI, A. 1992a.
Alleviating State Explosion during Verification of Behavioral
Equivalence; Univ. of Helsinki, Department of Computer Science,
Report A-1992-4, Helsinki 1992; ftp://saturn.hut.fi/pub/reports.

VALMARI, A. 1992b.
A Stubborn Attack on State Explosion; Formal Methods in System
Design 1(1992)4, 297-322.

VARPAANIEMI, K. 1994a.
On Computing Symmetries and Stubborn Sets; Helsinki Univ. of
Technology, Digital Systems Laboratory, Series B, Report No. 12,
Espoo 1994.

VARPAANIEMI, K. 1994b.
On Combining the Stubborn Set Method with the Sleep Set Method,
LNCS 815, Springer 1994, 548-567.

VARPAANIEMI, K.; HALME, J.; HIEKKANEN, K.; PYSSYSLAO, T. 1995.
PROD Reference Manual, Helsinki Univ. of Technology, Digital
Systems Laboratory, Series B: Techn. Report No. 13, Espoo, August
1995; ftp://saturn.hut.fi/pub/reports.

WIMMEL, G. 1997.
A BDD-based Model Checker for the PEP Tool; Univ. of Newcastle,
Dep. of CS, Major Individual Project, May 1997.

WIKARKSI, D.; HEINER, M. 1995.
On the Application of Markovian Object Nets to Integrated
Qualitative and Quantitative Software Analysis, ISST-Berichte 29/
95, Fraunhofer ISST, Berlin, Oct. 1995.

Proc. High Perfomance Computing ‘98, Boston, April 1998,
session “Petri Net Applications and HPC”, pp. 394-403

98/12/03 9 / 10

cally by help of general Petri net analysis tools. Therefore, they
are reproducible in an objective way.

For a general framework for Petri net based development and
analysis of dependable systems, we conclude the following
design criteria. At first, dedicated technical languages are needed
to express functional, safety, and performance requirements as
well. Second, the framework has to be customizable. Its compo-
nents (editors, analysis tools, simulation tools, code generation
facilities) should be interchangeable. For a given configuration,
user guidelines are required showing which analysis techniques
are recommendable in which order for a given analysis question.
Additionally, design criteria are required which promotes
meaningful analyses at each phase of development.

For specific application areas, dedicated configurations of the
framework can be defined involving also an adaptation of the
libraries and the terminology of the user interface. For instance,
in manufacturing control in general, it seems to be possible to
compile Petri net libraries of

• patterns which describe the communication structure of
certain devices on a cooperation level (for our production cell
case study , three such patterns are identifiable, each of them
applicable to at least two devices),

• patterns which are suitable to describe elementary motion
steps of the devices, and

• the associated environment models.

Using these libraries, it will be possible to develop control
programs for the supported types of manufacturing systems by
composition and refinement of instantiated net patterns.

In particular, in case of programmable logic controllers, the
tool box’s user interface may be adapted to the notions of the IEC
1131-3 standard.

REFERENCES

BALBO, G. 1992.
Performance Issues in Parallel Programming; LNCS 616, Springer,
1992, 1-23.

BEN-ARI, M.; PNUELI, M. A.; MANNA, Z. 1983.
The Temporal Logic of Branching Time; Acta Informatica 20(83),
207-226.

BEST, E.; GRAHLMANN, B. 1996.
PEP - more than a Petri Net Tool; Proc. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ‘96), Passau, March
1996, LNCS 1055, Springer 1996, 397-401; The system is available
on ftp.informatiuni-hildesheim.de.

BEST, E. 1996.
Partial Order Verification with PEP; in Holzmann, G.; Peled, D.,
Pratt, V. (eds), Proc. POMIV ‘96, Princeton, Am. Math. Soc. 1996,
305-328.

BRYANT, R. E. 1986.
Graph-based Algorithms for Boolean Function Manipulation, IEEE
Transactions on Computers C-35(86)8, 677-691.

BRYANT, R. E. 1992.
Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams; ACM Computing Survey 24(1992)3, 293-318.

BUCHHOLZ, P. 1991.
The Structured Analysis of Markovian Models (in German);
Informatik-Fachberichte 282, Springer 1991.

CLARKE, E. M.; EMERSON, E.A.; SISTLA, A. 1986.
Automatic Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications; ACM Trans. on Programming
Lnguages and Systems 8(86)2, 244-263.

CORBETT, J. C. 1994.
Evaluating Deadlock Detection Methods for Concurrent Software;
Proc. Int. Symposium on Software Testing and Analysis, 1994, 204-
215; extended version in Techn. Report, Dep. of Information and
CS, Univ. of Hawaii at Manoa, 1995.

COURCOUBETIS, C.; VARDI, M. Y.; WOLPER, P.; YANNAKAKIS, M. 1992.
Memory Efficient Algorithms for the Verification of Temporal
Properties; Formal Methods in System Design 1(1992)2/3, 275-288.

DESEL, J.; ESPARZA, J. 1995.
Free Choice Petri Nets; Cambridge Tracts in Theoretical Computer
Science 40, Cambridge Univ. Press 1995.

EMERSON, E. A. 1990.
Temporal and Modal Logic; in Leeuwen, J. v. (ed.), Handbook of
Theoretical Computer Science, Vol. B; Elsivier, Amsterdam 1990,
995-1072.

ENGELFRIET, J. 1991.
Branching Processes of Petri Nets; Acta Informatica 28(1991), 575-
591.

ESPARZA, J. 1993.
Model Checking Using Net Unfoldings; Proc. TAPSOFT ‘93, LNCS
668, Springer 1993, 613-628; full version in Science of Computer
Programming 23(1994), 151-195.

ESPARZA, J.; RÖMER, S.; VOGLER, W. 1996.
An Improvement of McMillan’s Unfoldig Algorithm; Proc. Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS ‘96), Passau, March 1996, LNCS 1055, Springer 1996.

ESPARZA, J.; MELZER, S. 1998.
Verification of Safety Properties Using Integer Programming:
Beyond the State Equation; private communication.

GERMAN, R. ET AL. 1994.
TimeNet - A Tool Kit for Evaluating Non-Markovian Stochastic
Petri Nets, Techn. Univ. Berlin, Dep. of Computer Science, Report
1994-19; http://pdv.cs.tu-berlin.de/forschung/timenet.html.

GERTH, R., PELED, D., VARDI, M. Y., WOLPER, P. 1995.
Simple On-the-fly Automatic Verification of Linear Temporal Logic;
Proc. 15th International Symposium on Protocol Specification,
Testing and Verification (PSTV'95), Warsaw 1995, 3-18.

GODEFROID, P. 1996.
Partial-Order Methods for the Verification of concurrent Systems;
LNCS 1032, 1996.

HEINER, M. 1992.
Petri Net Based Software Validation, Prospects and Limitations,
ICSI-TR-92-022, Berkeley/CA, 1992.

HEINER, M.; VENTRE, G.; WIKARSKI, D. 1994.
“A Petri Net Based Methodology to Integrate Qualitative and
Quantitative Analysis”, J. Information and Software Technology,
36(7), pp. 435-441, 1994.

HEINER, M.; DEUSSEN, P. 1995.
Petri Net Based Qualitative Analysis - a Case Study; Brandenburg
Techn. Univ of Cottbus, Dep. of Computer Science, Techn. Report I-
08/1995; http://www-dssz.Informatik.TU-Cottbus.DE/~wwwdssz.

HEINER, M. 1997a.
On Exploiting the Analysis Power of Petri Nets for the Validation of
Discrete Event Systems; Proc. 2nd IMACS Symposium on

8 / 10 mh@informatik.tu-cottbus.de

Heiner: Petri Net Based System Analysis without State Explosion

That’s why these transitions are superfluous in the given case,
and we are able to optimize our model by deleting them. For
more details see (Heiner 1997c).

We get an optimized model with the same state space as the
unoptimized one, but without far less dynamic conflicts. For this
version, the liveness for each transition of the considered pusher
chains has been proven by model checking the corresponding
temporal formula based on the branching process’ prefix.

6.2 Special Analysis
Special analysis deals with properties reflecting the intended

special functionality. The verification of safety properties is here
especially important. Therefore we will stress this topic in the
following paragraph.

(a) safety

There are different analysis techniques available to prove the
unreachability of unsafe states:

Facts (INA): The unsafe states may be modelled as facts
(special transitions which are expected to become never
enabled). But, the evaluation of bad states (a state where a fact is
enabled) by the given tool box requires the reachability graph.
That’s why we will avoid this approach.

Stubborn set reduction (INA): The net is transformed in
such a way that the unsafe states become dead states. Then the
stubborn set reduced reachability graph has to be constructed.
Because any dead states are preserved under this reduction, the
original net does not contain any unsafe states if the transformed
net does not reach any dead states. This technique could be
useful if the required net transformation is realized by the
analysis tool.

Place invariants (INA): A sufficient condition for the
unreachability of a given marking m is fulfilled if there exists at
least one place invariant x for which the token conservation
equation

is not valid.

State equation (INA): Let C denote the P x T integer
incidence matrix of the given Petri net, and the Parikh
vector of a firing sequence . Then the following linear
programming problem, called the state equation

 ,

has for each reachable marking at least one solution, namely x:=
. So the feasibility of the state equation is a necessary

condition for the reachability of the marking m, or the infeasi-
bility is a sufficient condition for the unreachability of m.

To check these both equations, complete markings must be

specified. But unsafe states are usually given in terms of
submarkings (containing “don’t care” places). This main disad-
vantage is overcome in the next approach.

Trap equation (PEP): Based on a linear upper approxi-
mation of the state space, we have a sufficient condition for linear
properties of the type The implementation is going to
be integrated in an improved version of PEP.

Model checking of temporal formulae: Model checking,
combined with stubborn set reduction (PROD, LTL\X) or based
on the finite complete prefix of a branching process (PEP, CTL0),
provides generally the most convenient method to raise safety
questions, esp. because set of (unsafe) states may be charac-
terized in a concise manner. Both model checkers run very fast.
Due to the evaluation method, they are applicable also to larger
systems of which the size of the interleaving state space is
unknown.

(b) progress

Progress properties use in general a richer set of (temporal)
logical operators. Therefore, model checking facilities are
unavoidable. Due to the AG and AF operators, these properties
can be proven only by those tools providing the whole CTL or
LTL.

(c) consistency

General consistency conditions are analyzable by INA, and
in the temporal logic version by PROD or PEP. But for larger
systems, it is generally a cumbersome task to prove this type of
properties by finding the suitable place invariants.

7 CONCLUSIONS

According our experience gained up to now, at least for the
analysis of a restricted class of concurrent systems modelled by
Petri nets, the construction of the complete state space can be
avoided by a suitable combination of different methods (possibly
implemented by different tools). This class can be characterized
as follows:

• (Intentionally) life and 1-bounded systems (hence, covered
by semipositive place and transition invariants),

• a certain degree of concurrency (which increases the
efficiency of partial order methods and partial order
representation methods),

• moderate amount of dynamic conflicts (non-determinism).

So, all qualitative (i.e. timeless) properties of our case studies
have been proven without construction of the complete reacha-
bility graph (interleaving state space). Up to now, the quantitative
(i.e. time-dependent) analysis of interval nets is based on reacha-
bility graph construction and evaluation. But in (Semenov and
Yakovlev 1996a), a method has been proposed to describe the
behaviour of interval nets by a finite prefix of the branching
process. It seems to be worth thinking over how to combine both
approaches. Nevertheless, all proves were carried out automati-

x p() m0 p()⋅
p P∈

∑ x p() m p()⋅
p P∈

∑=

℘ q()
q T ∗∈

m m0 C x⋅+=
x 0≥

℘ q()

A m⋅ b≤

Proc. High Perfomance Computing ‘98, Boston, April 1998,
session “Petri Net Applications and HPC”, pp. 394-403

98/12/03 7 / 10

Each physical device is basically characterized by its finite set of
discrete states (maybe representing equivalence classes of
possibly infinite sets of states), and additionally by the
commands (externally visible transitions) forcing the device to
change its current state. Obviously, each device must be in one
and only one state at any time. In terms of Petri net theory, the
states of a device form a place invariant establishing a
consistency condition of the system model. In our concurrent
pushers example, there are two types of devices (relays, pushers),
while in the production cell five different ones exist. Accord-
ingly, there are different consistency conditions to check during
special analysis.

Control Program Model. In case of the pusher example,
the original programmable logic controller programs are written
in IEC 1131-3. General transformation rules have been intro-
duced to transform automatically programmable logic controller
programs into ordinary place/transition Petri nets. The automati-
zation of this translation is part of a running project. By this way,
the rich amount of available Petri net analysis techniques and
tools become applicable for computer-aided analysis of program-
mable logic controller programs. For an example, how this could
look like, see (Heiner 97a).

In order to avoid unnecessary restrictions of the concurrency
degree, it could be helpful to exploit a special test arc feature for
modelling of the transitions’ side conditions. In that case, the
amount of data, which has to be searched through during the
analysis steps, may become much smaller, provided the analysis
tools are prepared to handle test arcs (Semenov and Yakovlev
1996b).

An overview of the corresponding basic modelling steps to
develop step-by-step the total system model is given in figure 4.

6 ANALYSIS

In the following we summarize our experience gained up to
now while analysing the mentioned case studies (see section 4)
by our tool box (see section 3).

6.1 General Analysis
General analysis deals with properties which should be valid

independently of the intended functional behaviour of the
system. Basically, these are boundedness and liveness, putting up
together the well-formedness criteria.

boundedness: All nets are covered by semi-positive place
invariants. This proof lasts several seconds in the worst case if
taken by INA. Moreover, the token sum of all these place invar-
iants equals to 1. So we are able to conclude the 1-boundedness
of the net (a necessary precondition for PEP’s model checker).

liveness: The deadlock freedom of all nets can be proven
very efficiently by construction of stubborn set reduced reacha-
bility graphs (INA, PROD), which are in all processed examples
much smaller than the complete state space.

Additionally, it can be shown efficiently that the net is
covered by semi-positive transition invariants as necessary (but
not sufficient) condition for liveness. Moreover, the deadlock-
trap property helps to proof the liveness of the production cell’s
cooperation models.

But liveness (no dead system parts) can’t be proven by
classical Petri net theory neither for the production cell’s control
model nor for longer pusher chains. Reasons are the lack of
suitable net structures (the given nets are not extended simple
ones, therefore the deadlock trap property could not help; the
known net reduction rules do not work;), and the well-expected
state explosion by considering all interleaving transition
sequences (reachability graph). We get state spaces up to 107 for
the control model of the production cell, and up to 109 for 10
concurrent pushers chained up.

The way-out could be a liveness proof for each transition by
model checking the temporal formula: based on
the branching process’ prefix (here en(t) stands for the enabling
condition of t). This idea works for all versions of the production
cell.

However, the prefixes are also unconstructable for more than
6 pushers. The reason for that seems to be the “useless” dynamic
conflicts caused by transitions reproducing the current state in an
active way. Test arcs to model side conditions might be helpful
here. These dangerous transitions are part of general net compo-
nents for context-independent modelling of basic statements. But
in case of the given Petri net, modelling a programmable logic
control program, these basic statements appear (only) as side
conditions of the control flow, and never within the control flow.

requirements

controller plant safety
requirements

compiler modelling

temporal

library

control
model

environment
model

set of
temporal

composition

system
model

validation methods
errors /

formulae

logic

Figure 5: Basic modelling steps.

functional

inconsistencies

AG EF en t()()

6 / 10 mh@informatik.tu-cottbus.de

Heiner: Petri Net Based System Analysis without State Explosion

describes only the synchronization of the machine controllers,
while the refined control model includes also the interactions of
the controllers with the controlled plant. The complete hierar-
chical model (with the size of about 200 places and 200 transi-
tions structured into 65 pages) together with analysis protocols
are published in (Heiner and Deussen 1995), a shorter and
updated (by recent analysis results) version is going to appear in
(Heiner et al. 1998).

The concurrent pushers are an adopted version of the
pusher problem for which in (Rausch et al. 1996) a control
program has been synthesized automatically. By this way, our
verification presents a reversal check for that synthesis. The
example consists basically of two concurrently working pushers
moving work pieces (see figure 3). The work piece is moved
from position one to position two by the first pusher, and from
position two to position three by the second pusher. Both pushers
are driven by electric motors which can be controlled by corre-
sponding relays into two moving directions. Starting from this
basic situation, chains of concurrent pushers may be constructed
in order to move pieces step by step from the input position via a
number of inner positions to the output position.

A characterization of the scalable model (chains up to 10
pushers have been considered resulting into net size of about 190
places and 215 transitions), and the essential analysis results are
published in (Heiner 1997a). In (Heiner 1997c) a more detailed
discussion can be found concerning two modelling versions and
related consequences with regard to the analysis expenses
involved.

Currently we are working on case studies taken from (Moon
1992), and (Probst 1996) to get a deeper insight into the pros and
cons of OBDD-based methods in comparison with other
techniques.

Moreover, the interested reader is referred to (Corbett 1994)
for a related experience report. There, a tool combination
covering integer programming (INCA), partial order reduction
(SPIN) and OBDD (SMV) has been used for deadlock analysis
of about 20 examples of different sizes. The efforts to analyse the
same examples with PEP’s prefix builder and model checker are

reported in (Best 1996).

Requirement Specification. In addition to the task
descriptions, more or less exhaustive lists of usually informally
specified functional and safety requirements are given. Typical
properties of this type are in case of the concurrent pushers e.g.:

(a) safety

• At any time, a pusher can be driven in one direction only.

• To avoid collisions, it is not allowed to move adjacent
pushers at the same time.

• No pusher motion must be driven too far/near.

• While moving a pusher, a new work piece must not
arrive in its input position.

(b) progress

• After an active phase of a pusher, its successor will be
activated before the predecessor will be started again.

• It is guaranteed that each pusher works infinitely often
(livelock freedom).

• Any work piece entering the plant will finally leave the
plant.

(c) consistency

• Additional properties to be verified emerge during mod-
elling reflecting useful (self-) consistency checks (see
section 5).

5 MODELLING WITH HIERARCHICAL
PETRI NETS

The models of the total systems may be characterized by a
strong separation of controller software and environment into
different parts. A controller program consists generally of a finite
and static set of communicating processes. The environment
models are composed of small reusable components: the
producer/consumer processes of the work flow, and the devices
of the controlled plant.

Environment Model. There exist net components for
each device type - building step-by-step a growing reusable
component library to describe the uncontrolled plant behaviour.

Figure 3: Concurrent pushers.

Pos. 3 Pos. 2

Pu
sh

er
 1

R
 2

R
 1

Pusher 2

M

M

Piece, Pos. 1

Controller 2

R
 2

R
 1

Controller 1

controller

actuatorssensors

plant

environment

producer consumer

Figure 4: General system model structure.

Proc. High Perfomance Computing ‘98, Boston, April 1998,
session “Petri Net Applications and HPC”, pp. 394-403

98/12/03 5 / 10

quite lengthy session protocols. Many model checkers (PROD
and SMV, but not PEP) produce an execution path (sequence of
states) on which a property in consideration is violated or a trace
(transition sequence) to a state which violates this property,
depending on whether LTL or CTL is provided.

Which tools should be applied in which order depends on the
analysis methods they are based on. Which tools may be applied
at all for a given type of question depends on their power to
express a specific analysis question. To highlight differences
between the applied tools concerning their expressiveness, it is
useful to summarize typical questions/properties dealt with
during analysis. In the following ϕ stands shortly for a general
logical expression characterizing usually a (wanted or unwanted)
state or set of states.

(1) reachability-related properties of the logical form :
Reachability of a state where ϕ holds; there exists at least
one computation path (future behaviour) to reach eventually
a state where ϕ will be true.

(2) safety-related, or equivalent : Unreach-
ability of a state where ϕ holds; for every computation path,
ϕ will never be true.

(3) invariant-related, or equivalent : Gen-
eral validity of an assertion ϕ; for every computation path, ϕ
will be true for ever.

(4) liveness-related, : What ever happens, there
exists the chance (at least one path) that ϕ will be true.

(5) progress-related, : For every computation path,
ϕ will eventually be true.

Table 1 describes which tool may be applied for which type
of logical expression. The need to combine a variety of analysis
tools stems from the different features (to raise different
questions) or different analysis methods (to answer similar
questions in a different way) they provide. Each of these tools
has its strength and limits. So, they do not compete, but
complement each other. The decision, which kind of analysis
methods in which order is advisable and leads to results most
efficiently, seems to depend generally on the application area.

4 CASE STUDIES

A search trough the literature reveals a lot of examples which
are “a must” while performing methods/tools comparisons.
Besides the well-known set of low-level mutual exclusion
algorithms, such famous academic examples like Dijkstra’s
dining philosophers, and Milner’s schedulers have been
processed by our tool box. The mutex algorithms seem to be an
unavoidable exercise to learn which properties are analyzable in
which manner. But their very small state spaces make them
uninteresting for efficiency comparisons. In opposite to that, the
scalable philosophers and schedulers allow quick test series with
increasing state spaces to get a first feeling for the practicability
limits of current tool implementations. Unfortunately, many
practical situations are rather unlikely to exhibit such regular
structures, which makes such conclusions based on academic test
series of limited value.

Therefore, the focus of our investigations builds real-life case
studies of realistic sizes. Let’s give two examples - one for each
approach of Petri net based software engineering mentioned in
section 2. For the first example production cell, a Petri net speci-
fication has been developed and validated a priori, while in the
second example concurrent pushers the starting point was a
programmable logic controller written in IEC 1131-3, for which
a posteriori a Petri net has been derived.

The production cell, a really existing industrial facility,
comprises six physical components: two conveyor belts, a
rotatable robot equipped with two extendable arms, an elevating
rotary table, a press, and a travelling crane. The machines are
organized in a (closed) pipeline (figure 2). Their common goal is
the transport and processing of metal plates. Altogether there
exist 14 sensors and 34 actuators to control the cell. For more
details of the task description the reader is referred to (Lewerentz
and Lindner 1995). In that book, also a list of safety and liveness
requirements can be found which are to obey by an implemen-
tation of the control program.

We have developed and analysed the control software step-
wise in two abstraction levels constituting the cooperation model
and the control model. The more abstract cooperation model

EF ϕ

AG ϕ¬() EF ϕ¬

AG ϕ EF ϕ¬()¬

AG EF ϕ

AG AF ϕ

Table 1: Temporal logics comparison.

Tool Supported type of logic
Types of
properties

INA1.7 EF ϕ (but ϕ can only be given by a
(sub-) marking)

(1), (2)

INA2,
PROD/
PROBE,
SMV

(full) CTL, i.e.
EX/AX, EF/AF,
EG/AG, EU/AU

(1) - (5)

PEP CTL0: AG, EF (1) - (4)

PROD/
on-the-fly

LTL\X: (without nexttime operator)
G, F, U (unquantorized versions of
AG, AF, AU)

(2), (3), (5)

feed belt (belt 1)

deposit belt (belt 2)

elevating rotary table

robot

arm 1

arm 2

press

travelling crane

Figure 2: Top view of the production cell.

4 / 10 mh@informatik.tu-cottbus.de

Heiner: Petri Net Based System Analysis without State Explosion

explicit state by state enumeration of the state space.

(3.2) Lazy state space constructions build reduced state
spaces instead of the complete ones. Famous and well-known
examples are the coverability graph, a finite representation of the
infinite state set of unbounded systems, and the symmetrical
reduced reachability graph exploiting state symmetries. Both
methods have in common that each set of states, which are
regarded to be equivalent under the given equivalence notion, is
represented by only one state.

Moreover, if we deal with system properties which are
invariant under the interchanging of concurrent transition occur-
rences, it is superfluous to consider all those interleavings
separately. It is only necessary to construct a reduced version of
the interleaving state space of the system, which is generally
much smaller than the complete state space, especially in case of
highly concurrent systems. In this way, e. g. all dead states can be
found, or the un-/reachability of special states can be decided.
Methods based on this idea are sometimes called partial order
methods (a term which should be sharply distinguished from
partial order representation techniques described below). A well-
tried example of a partial order method is Valmari’s stubborn set
approach (Valmari 1992a), which can be combined with other
techniques like the sleep set method (Godefroid 1996),
(Varpaaniemi 1994b) and the symmetry method (Varpaaniemi
1994a). Valmari developed a generalization of his method in a
way that properties expressible by Linear Time Temporal Logic
(LTL) without the nexttime operator X are preserved by the
reduction process (Valmari 1992b). Therefore, the standard
model checking technique for LTL (Courcoubetis et al. 1992),
(Gerth et al. 1995) can be applied to stubborn reduced reacha-
bility graphs.

(3.3) An alternative class of approaches to handle the state
explosion problem bases on partial order representations of
the behaviour of a concurrent system. Instead of sequences of
events (i. e. occurrences of transitions), partially ordered sets of
events are used as behaviour description. Partial orders of events
can be interpreted in the following way: If an event precedes
another one then the former one causes the latter, or the former
one has to occur earlier in time than the latter. Since state
explosion is in general caused by the representation of all
possible interleavings of concurrent actions, partial order repre-
sentations tend to be much smaller than reachability graphs, at
least in case of a moderate amount of non-determinism.

A currently intensively discussed partial order representation
approach is the construction of a “finite complete prefix of a
branching process” of a Petri net (shortly called the prefix of the
net) (Engelfriet 1991), (McMillan 1992b), (Esparza 1993). An
further improvement has been introduced in (Esparza et al.
1996). The possible behaviour of a safe (1-bounded) net is repre-
sented by another, so-called occurrence net. Based on this net
prefix, efficient model checking is possible for a very restricted
subset of CTL comprising only the temporal operators AG and
EF.

The tool box currently used (compare figure 1) is as follows.

The Petri net EDitor PED with its hierarchy browser (Tiedemann
1997) supports basically the construction of hierarchical place/
transition nets. Complementary, all necessary attributes (esp.
time attributes) of those net types can be assigned to appropriate
net elements, which are analyzable by the evaluation tools linked
up:

• PEDVisor allows to animate the functional behaviour by
playing the token game.

• INA, version 1.7 (Starke and Roch 1997) provides an almost
complete set of the (currently) known static and dynamic
analysis techniques of “classical” Petri net theory.
Additionally, its analysis methods of time-dependent
(duration and interval) Petri nets have been applied
extensively. Since version 2, a CTL model checker running
on the reachability graph is also provided.

The next three tools follow the model checking approach,
using (different versions of) propositional temporal logics as a
flexible query language for asking questions about the (complete/
reduced) set of reachable states. By this way, even very large
state spaces become manageable. But, the state space has to be
finite for that purpose. So, boundedness is here an unavoidable
precondition.

• PROD (Varpaaniemi et al. 1995) supports CTL, based on the
reachability graph, as well as LTL, using on-the-fly stubborn
set reduction.

• PEP (Best and Grahlmann 1995) offers, besides many other
interesting things not used here, a model checker for a
restricted type of CTL based on a partial order representation
of the system behaviour. Its application is however restricted
to 1-bounded nets.

• SMV (McMillan 1992a, 1993) provides a model checking
technique for CTL based on OBDD’s. This tool tailored to
hardware verification has been linked up based on the ideas
outlined in (Wimmel 1997). The structure of a Petri net is
translated into the SMV’s input language by defining a
Boolean expression which computes the set of all possible
successor states for a given state. This approach turns out to
be rather inefficient, since SMV is unable to determine
dependencies between place variables which could be used to
compute smaller OBDD’s.
Therefore, we are going to realize a dedicated OBDD
implementation for CTL model checking of the state spaces
of Petri nets. First computational results are very
encouraging.

• TimeNet (German 1994) supports the evaluation of
generalized stochastic Petri nets by simulation as well as by
analysis based on Markovian processes.

• FUNlite (Spranger 1997) allows the generation and (token-
driven) distributed processing of executable code.

Information about the results of the analyses are recorded in
several protocols. The type of such information depends on the
analysis method and the tool used. To give a few examples, in
general analysis e.g. dead states or upper bounds for the number
of tokens located at some place (if any) are recorded by INA in

Proc. High Perfomance Computing ‘98, Boston, April 1998,
session “Petri Net Applications and HPC”, pp. 394-403

98/12/03 3 / 10

• the integration of qualitative as well as quantitative analysis
on the basis of a common representation of the system under
development.

3 TECHNIQUES AND TOOLS

Concerning the methods to validate Petri nets (semi-)
automatically, three different types can be basically distin-
guished: animation (1), static (2) and dynamic techniques (3).

(1) Net-based animation aims at functional behaviour
simulation by playing the token game. The main advantage
consists in a deeper insight into the net and - therefore at the
same time - into the system behaviour. The results gained depend
on the abstraction level of the underlying net model. But in any
case, this special version of prototyping is only a confidence-
building approach unable to replace exhaustive analysis methods.

(2) All static analysis techniques have in common that they
avoid the enumeration of the state space of a system. To get an
overview on static analysis techniques of the “classical” Petri net
theory as well as definitions of the terms in the following used,
but not explained (for obvious reasons) see (Murata 1989) and
(Starke 1990). Basic techniques corresponding mainly to general
analysis (of boundedness or liveness) are net reduction and struc-
tural analysis.

Net reduction tries to decrease the net size by property-
preserving replacing of local net sub-structures by smaller ones.
A set of reduction rules is called complete if it reduces any net to
a minimal prototype having the same properties (concerning
boundedness and liveness), and it is called nearly complete, if it
reduces at least all bounded and live (shortly well-formed) nets to
its 2-node prototype. Nearly complete sets of reduction rules are
known only for a quite restrictive net class - the extended free
choice nets (Desel and Esparza 1995). For general Petri nets, we
only have some quite weak reduction rules which usually do not
help substantially.

Structural analysis consists in the analysis of at best locally
structural properties, which allow - usually in a certain combi-
nation - conclusions on behavioural properties. A famous and
maybe the most successful example is the so-called deadlock
trap property, which involves liveness in case of extended simple
nets, and deadlock freedom else.

Additionally, there exist different methods of integer
programming based on a linear-algebraic description (incidence
matrix) of the Petri net. Integer programming revealing net invar-
iants supports general analysis (any well-formed net is covered
by semipositive place and transition invariants) as well as special
analysis. In the latter case, system invariants are proven by
showing the existence of related net invariants. So first, suitable
system invariants have to be hypothesized, and second, the
related net invariants have to be found from the (in general non-
minimal) basis of invariants provided by a net analysis tool.
Generally, this is hardly manageable for larger systems (larger
concerning the number of places).

Moreover, place invariants may be helpful to proof the
unreachability of states by using the token conservation
equation. A further sufficient condition for unreachability, which
is similar efficiently to check, is given by the state equation (both
equations are used in section 6.2).

Recently, new approaches appeared combining known
concepts. The state equation test has been improved in (Melzer
and Esparza 1996) by adding the test of the trap property. A
marking has the trap property if it marks every trap that is
marked at the initial marking. Obviously, each reachable marking
satisfies not only the state equation, but also the trap property.
Therefore, this combination yields a stronger condition for
unreachability that can still be efficiently checked. In (Esparza
and Melzer 1998) a detailed discussion of related implemen-
tation considerations can be found.

In (Lautenbach and Ridder 1995), structural knowledge of
the given net (place invariants and traps) is used to accelerate
model checking algorithms.

(3) If a desired system property can not be determined by
static analysis techniques, dynamic analyses have to be tried.
The classical approach is the exhaustive construction and explo-
ration of the (interleaving) state space (reachability graph). The
exploration may be controlled either by on-the-board questions
to general net properties like boundedness, freedom of
deadlocks, and liveness, respectively, or by a more sophisticated
flexible query language. Such a query language encloses usually
some version of temporal logics. For an introduction to temporal
logics and the notation used in this paper see e.g. (Ben-Ari et al.
1983), (Emerson 1990).

Although almost every behavioural property of a Petri net
with finite reachability graph can be theoretically decided by
exhaustive analysis, this approach is limited in practice due to the
state explosion problem. Basically, there are three techniques
alleviating the state explosion dilemma.

(3.1) Compression techniques attack the state explosion by
avoiding an explicit representation of the total (interleaving) state
space of a concurrent system. There are two different approaches
to represent state spaces in a memory efficient manner.

Modular representations of reachability graphs using
Kronecker algebra have been successfully applied for
performance analysis of stochastic Petri nets (Buchholz 1991),
(Kemper 1997). In (Kemper and Lübeck 1998), this approach has
been adopted to Computation Tree Logic (CTL) model checking
(Clarke et al. 1986) of the state space of ordinary Petri nets. First
computational results show that a Kronecker representation of
the state space may be very space efficient if a suitable modulari-
zation can be found.

Ordered binary (or natural) decision diagrams (OBDDs,
ONDDs) (Bryant 1986, 1992), (Lautenbach and Ridder 1995)
represent sets of states (and sets of transitions between states) by
their characteristic function. Model checking (in this context
sometimes called symbolic model checking) of temporal logic
formulae can be performed on OBDDs (ONDDs) without an

2 / 10 mh@informatik.tu-cottbus.de

Heiner: Petri Net Based System Analysis without State Explosion

2 PETRI NET FRAMEWORK

Net based software engineering has been a well-know
approach for more than 15 years. Basically, there are two
different possibilities of the role Petri nets are able to play during
the software development process.

When used right from the beginning, Petri nets are
constructed a priori to model and prototype the concurrent
aspects of the system under development, and the system
designer is able to predict, at the chosen abstraction level, the
possible (qualitative and quantitative) behaviour of the system
under development. After being satisfied with the analysis result
obtained, the actual program code (of the communication/
synchronization skeleton) in the usually given implementation
language can be generated, or the sequential program parts are
added directly to the Petri net and their execution is driven by the
token flow.

The second approach to the use of Petri nets in concurrent
software development relies on the a posteriori usually
automatic Petri net generation from an high-level language
description of the software under development (interpreted as
specification, implementation, or anything in between). By
analysing the generated formal model in the background, conclu-
sions on the given software’s properties are possible. For more
details see e.g. (Balbo 1992), (Heiner 1992).

Independent of its place within the software development
cycle, Petri net based software validation tries to minimize the
presence of faults in the system’s operation phase by analytical
and (as far as possible) computer-aided methods in the pre-
operation phase.

Concerning the type of properties to be validated, two classes
of qualitative validation techniques can be distinguished:

• Context checking deals with general qualitative properties
like freedom from data or control flow anomalies which must
be valid in any system independent of its special semantics
(for that reason, it is called in the following general
analysis). These properties are generally accepted or project-
oriented consistency conditions of the static semantics of any
program structure like boundedness and liveness.

• Verification aims at special qualitative properties like
functionality, safety or robustness, which are determined by
the intended special semantics of the system under
development (to underline this fact, it is called in the
following special analysis).

Both general and special analysis aim at time-less properties
which should be valid independent of time restrictions. Unfortu-
nately, that is not always obvious in the case of concurrent
systems. For a discussion of related problems see (Heiner and
Popova 1997d).

Evidently, a successful general analysis is a necessary
prerequisite to prove that some special qualitative properties will
be fulfilled under any circumstances. So, the validation of quali-
tative properties can be divided into two consecutive steps, which
supplement each other. First, the context checking of general

semantic properties (general analysis) has to be done by a
suitable combination of static and dynamic analysis techniques
of Petri net theory. Afterwards, the verification of well-defined
special semantic properties (special analysis) given by a separate
specification of the functional and safety requirements has to be
performed. Especially for the second step it is very useful to
supplement the power of “classical” Petri net theory by the
model checking approach, using temporal logic as a flexible
query language for asking questions about the (complete/
reduced) set of reachable states.

The process model applied in our case studies can be seen as
an adaptation of the general Petri net based approach to software
validation presented in (Heiner et al. 1994). Key ideas are
(compare figure 1):

• separate specifications of functional, safety and performance
requirements which have to be provided by the customer of
the system to be developed,

• a recommended order, in which validation methods should be
applied (referring to figure 1 from top to bottom), and

analysis
protocols

qualitative

PED

qualitative Petri net analyzers

PRODINA

quantitative Petri net analyzers

analysis
protocols

quantitative

motion

execution tool

FUNliteprotocols
execution

lib

hierarchy
browser

(distributed) animation tool
protocols

functional
testing PEDVisor

informal
specification

safety
requirements

performance
requirements

INA
(non-stochastic)

TimeNet
(stochastic)

hierarchical
Petri Net Editor

with output filters

Figure 1: Tool box overview.

PEP

functional
requirements

(rapid prototyping)

SMV

Proc. High Perfomance Computing ‘98, Boston, April 1998,
session “Petri net Applications and HPC”, pp. 394-403

98/12/03 1 / 10

keywords: hierarchical place/transition nets, temporal logics, verifi-
cation, static analysis, model checking, reactive systems;

ABSTRACT:

The development of provably error-free concurrent systems is still a
challenge of practical system engineering. Modelling and analysis of
concurrent systems by means of Petri nets is one of the well-known
approaches using formal methods. Among those Petri net analysis
techniques suitable for strong verification purposes there is an increasing
amount of promising methods avoiding the construction of the complete
interleaving state space, and by this way the well-known state explosion
problem.
These alternative approaches are summarized and compared with each
other: structural analysis, integer programming, compressed and
composite state space representations, lazy state space constructions, and
partial order representations.
It is demonstrated by means of case studies that the available methods
and tools are actually applicable successfully to at least medium-sized
systems. For that purpose, the step-wise validation of various qualitative
system properties (consistency, safety, progress) of the concurrent control
software of reactive systems is exemplified. If possible, different analysis
techniques are applied and compared with each other concerning their
pros and cons. The main lesson learnt is that the different methods do not
compete, but complement each other.
Finally, objectives of an open integrated tool box to support Petri net
based dependability engineering are outlined.

1 INTRODUCTION

Petri nets enjoy several advantages with respect to modelling
and analysis of discrete event systems with inherent concurrency.
Worth mentioning is especially the ability of combining different
methods on a common representation. This variety ranges from
informal (animation) via semi-formal (systematic testing) up to
formal (exhaustive analysis) methods and comprises qualitative
as well as quantitative evaluation techniques. But maybe most
valuable is the fact that among the formal methods suitable for
strong verification purposes there is an increasing amount of
promising methods avoiding the construction of the complete
interleaving state space, and by this way the well-known state
explosion problem.

This paper gives an overview on these alternative methods
and reports on our experience concerning their strength and
limitations for verification of medium-sized reactive systems.

The discussion covers

• static analysis techniques, constructing no state space at all,

• compression techniques, representing the state spaces in a
memory efficient manner,

• lazy state space constructions building reduced state spaces
instead of the complete ones, and

• alternative state space constructions, exploiting
concurrency to build partial order (true concurrency)
descriptions of the system behaviour.

It is claimed that the optimistic analyses results gained up to
now are typical for at least a certain class of practical problems.
This assumption is justified by case studies performed, in which
Petri net specifications of realistically sized controller software
have been developed and verified.

This paper deals mainly with implementable qualitative
analysis techniques suitable for place/transition nets without time
constraints. The reader not familiar with this model see for an
introduction e.g. (Peterson 1981) or (Reisig 1985). Quantitative
evaluations of our case studies are still under progress. We are
experimenting with different types of time-dependent Petri nets,
e.g. duration interval nets to prove the meeting of given deadlines
in the framework of worst-case evaluation (Heiner and Popova
1997b), and stochastic nets to estimate probability measures like
throughput, bottlenecks or average processing time (Wikarski
and Heiner 1995).

The paper is organized as follows. Section 2 gives an
overview on the underlaying Petri net based framework to
develop dependable software based systems. Section 3 summa-
rizes Petri net related analysis techniques and corresponding
analysis tools, which are part of our current tool box. Typical
examples of performed case studies and their informal
requirement specifications are given in section 4. Afterwards, the
applied way of modelling with hierarchical Petri nets is outlined
in section 5. The step-wise validation of qualitative properties is
described in more detail in section 6. Finally, some conclusions
into the direction of an open integrated tool box to support Petri
net based dependability engineering are summarized in section 7.*) This work is supported by the German Research Council

under grant ME 1557/1-1

 PETRI NET BASED SYSTEM ANALYSIS

WITHOUT STATE EXPLOSION *)

Monika Heiner
Brandenburg University of Technology at Cottbus,

Department of Computer Science, Postbox 101344, D-03013 Cottbus

mh@informatik.tu-cottbus.de
http://www.informtik.tu-cottbus.de

