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Abstract� In this paper we combine structural analysis of Petri nets with the symbolic
representation of state spaces by Binary Decision Diagrams �BDDs�� The size of a BDD
is determined by the number of its variables and by their order� We suggest two methods
based on structural properties �precisely one�token�P�invariants� which improve the en�
coding of states� One method attempts to derive a good variable order� The other tries
to reduce the needed number of variables by compacting the encoding of states�
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� Introduction

Petri nets have been used to model various concurrent systems such as network protocols�
asynchronous circuits� control software for manufacturing systems� and so on� For the
formal veri�cation of practical systems� it is very important to avoid state explosion�
Symbolic manipulation based on Binary Decision Diagrams �BDDs� has succeded in
handling huge state spaces ��� 	
�

The size of a BDD a�ects the memory and CPU requirements and thus plays an
important role for the success of a veri�cation process� The number of BDD nodes
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�i�e� the BDD size� is in
uenced by the number of variables and by their order ��
�
One important feature of Petri nets are their structural properties which can be easily
obtained by linear algebraic techniques� We suggest two methods that use one�token�P�
invariants to attack the blowup of BDDs� The �rst method attempts to obtain an order
of the variables such that the size of a BDD will be close to the optimal� This approach
resembles ���
 but uses P�invariants instead of the Petri net unfolding�

The second method is based on the observation that the state space of a Petri net
is very sparse� For example� it is not surprising that a Petri net with a hundred places
has ������ reachable states� its theoretical state space ������ is approximately ���� larger
than the reachability set ���
� Taking this under consideration we give a dense encoding
scheme for the states of a Petri net using also P�invariants� This results in a reduction
of the number of variables and therefore in a reduction of the BDD size�

The rest of this paper is organized as follows� In the following two sections� we
brie
y review the theory of Petri nets and BDDs� In section �� we propose a method to
obtain good variable orders for BDDs� In the next section� a method for compacting the
encoding of states is presented� Section � includes experimental results� Finally we give
a brief conclusion�

� Petri nets

Petri nets are a bipartite graphs which are a mathematical formalism adequate to de�
scribe non�sequential behavior such as concurrence and non�deterministic choice� A
Petri net is de�ned as follows�

De�nition � �Petri net� A Petri net N � hP� T� F�m�i consists of

�� Finite� nonempty sets P and T such that P � T � �� Elements of P and T are
called places and transitions� respectively�

�� A mapping F � �P � T � � �T � P �� N�

�� A mapping m� � P � N� called the initial marking�

This type of a Petri net is also called Place�Transition Net� As usual we use the following
notations�

�� The pre� and postsets of a transition resp� of a place x are given by �x � fy �
P � T � F �y� x� � �g and x� � fy � P � T � F �x� y� � �g�

�� For each transition t � T the mappings t�� t� � P � N are de�ned by t��p� ��
F �p� t� and t��p� �� F �t� p��

�� �t �� t� � t�

A marking �or also called state� of a Petri net is a function m � P � N� where m�p�
denotes the number of tokens on a place p� A transition t � T is enabled �may �re� under
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a marking m i� t� 	 m �i�e� t��p� 	 m�p� for each place p � P �� When an enabled
transition t �res under a marking m� a new marking m� given by m��p� �� m�p�	�t�p�
is reached� The set of markings that can be reached from the initial marking m� via all
possible �rings of transitions is called the reachability set �or state space� and is denoted
by 
m�i�

A Petri net is called safe ��	bounded
 i� m�p� 	 � for every p � P and every marking
m reachable from the initial marking m� �i�e� m � 
m�i�� In this paper we only deal with
safe Petri nets�

A place invariant �or for short P�invariant� i has the property that for every reachable
markingm � 
m�i the equation i 
m � i 
m� holds� In other words� the number of tokens
weighted by the P�invariant i is constant in all reachable markings� More formally ��
� a
mapping i � P � Z is called a P	invariant i� for every transition t holds

X

p��t

i�p� �
X

p�t�

i�p�

For every place p � P with m��p� � � we can compute the one�token�P�invariants
it is contained in by solving the above system of linear equations� where i�p� � � and
i�q� � � for each place q � P � q �� p and m�q� � �� If for a solution of the system for all
q � P � i�q� � f�� �g holds then all places with i�q� � � form a one�token�P�invariant� The
computation of this speci�c system of linear equations can easily be done by a variant
of the Gauss elimination algorithm ���
� One�token�P�invariants have the property that
under all reachable markings always exactly one place in every one�token�P�invariant is
marked� In the sequel of this paper we only handle one�token�P�invariants and call them
for short P�invariants�

For a more detailed introduction into Petri net theory we refer e�g� to ��� ��
�

� Binary Decision Diagrams

Binary Decision Diagrams �BDDs� are complete binary trees that represent the result of
a sequence of two�way �binary� choices� Bryant ��
 introduced a graph representation for
these binary trees that can be used to represent Boolean formulas� The representation
proposed by Bryant assumes a linear order on the Boolean variables appearing in the
Boolean formula� The order on the variables determines the order of the decisions made
in the BDD� starting from the root� BDDs are obtained from the ordered binary trees
by applying the following two transformations�

�� Combine isomorphic subtrees into one single tree�

�� Eliminate nodes whose left and right children are isomorphic�

One achives a very compact and canonical representation for Boolean formulas� BDDs
are often substantially more compact than traditional normal forms such as conjunctive
normal form and disjunctive normal form� and they can be manipulated very e�ciently�
Bryant gave algorithms of linear complexity for computing the BDD representation of
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Figure �� An example of di�erent orders of variables�

Boolean binary operations on two formulas represented by BDDs ��
� It has been noted
that the size of BDDs depends heavily on the order of the variables in the formula�

For example in �gure � the formula �a � b� 
 �c � d� is given with two di�erent
orders� A dashed �solid� line indicates the branch when the decision variable is � ���� In
general� the size of BDDs can be exponential in the number of variables� However� in
practical examples BDDs have usually a smaller size when an appropiate ordering of its
variables is used�

The use of BDDs for analysis of Petri nets has been explained in ��
� A marking of
a Petri net can be represented by means of a Boolean vector M � �jP j� The fact that a
place pi is marked is denoted by the value true for M 
i�� A Boolean formula can also
be seen to be a representation of a set of Boolean vectors� A Boolean vector is in the
set� represented by the Boolean formula� i� the assignment to the variables evaluates
to true� This kind of representation is called characteristic function of a set� Hence
the reachability set of a given Petri net N can be represented by a Boolean formula�
which evaluates to true for all Boolean vectors representing a reachable marking of N �
Using structural information about a Petri net and standard Boolean functions such as
quanti�cation and substitution� the BDD representation of the reachability set can be
constructed� Algorithms for this kind of computation are developed and presented in ��
�

� Obtaining good variable orders

As indicated earlier� obtaining a good ordering of variables such that the size of the BDD
will be close to the optimal is very important for e�cient reachability set generation�
Consider the BDD built from the formula

�a 
 �b 
 �c 
 �d� � ��a 
 b 
 �c 
 �d� � ��a 
 �b 
 c 
 �d� � ��a 
 �b 
 �c 
 d�

which is given in �gure �� It represents � Boolean vectors where in each vector only one
variable is set to true� Associating one place of a Petri net with one variable of the
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Figure �� Example BDD

Boolean formula� the formula represents � markings where always exactly one place is
marked� Note that for a set of markings with the above characteristic� the size of the
BDD grows linear with the number of variables �places� and remains the same for all
possible orderings�

Taken this under consideration� we try to divide the places of a Petri net into clusters�
Each cluster has the property that the places in the cluster cannot be marked simultan�
iously� As suggested in section �� the information gained by one�place�P�invariants are a
good starting point for such a division� We use the heuristic algorithm proposed in ���

to partition the set of places into clusters�

I �� P�invariants�
C �� �� �� set of clusters ��
P �� list of places� �� ordered in ascending order of their

number of containment in di�erent P�invariants ��

while not�empty�P� do
p �� head�P��
�nd a cluster c � C such that �q � c �i � I with p� q � i�
if such cluster c � C exists then
c �� c � fpg

else
C �� C � ffpgg

�
od

This is a greedy algorithm which does not check all possible clusterings of a Petri net�
Due to the ascending order� the places which can be included into the largest number of
P�invariants will be considered last� Hence we will obtain a balanced number of places
in each cluster� which results in a better BDD size ���
�
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Figure �� Two dining philosophers

After obtaining a division of the places into clusters we need a way to order the
clusters with the same goal � to minimize the size of the BDD� For each pair of clusters
�ci� cj� we calculate the number of pairs of places �pi� pj� with pi � ci and pj � cj� such
that there exists a P�invariant i with pi� pj � i� This leads to a graph with clusters as ver�
tices and weighted edges between them� The weights indicate the degree of dependence
between the clusters� Considering this information we apply a simple greedy algorithm
���
 which orders the clusters according to their degree of dependence�

C �� set of clusters�
L �� ��

for each cluster compute the sum of his edge�weights�
choose cluster with highest sum�
append cluster to L�

while not�empty�C� do
foreach cluster left in C do
compute the sum of all edge�weights connected to already choosen clusters

od
choose cluster with highest sum�
append cluster to L

od

As an example we look at the Petri net in �gure �� There are obviously � one�
token�P�invariants� i� � �p�� p�� p�� p��� i� � �p�� p�� p�� p��� i� � �p	� p��� p��� p���� i� �
�p	� p��� p��� p���� i� � �p�� p�� p
� p��� p��� and i� � �p�� p�� p�� p��� p���� After applying the
�rst algorithm we obtain � clusters c� � �p�� p�� p�� p��� c� � �p�� p��� c� � �p�� p���� c� �
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�p
�� c� � �p	� p��� p��� and c� � �p��� p���� They have to be ordered by the second algo�
rithm such that we get the following variable order �p�� p�� p�� p�� p�� p�� p�� p��� p	� p��� p���
p��� p��� p
��

For further improvements we could order the places in a cluster by their number of
common P�invariants with places in the two neighbour clusters�

� Compact state encoding

One important feature of Petri nets is that their state spaces are usually very sparse�
The traditional one�variable�per�place encoding disregards this point�

One�token�P�invariants give us a direction to improve the standard encoding� As
mentioned before� one�token�P�invariants have the property that always exactly one
place is marked� Therefore it is enough to encode only the number of the currentlymarked
place instead of the whole vector� A P�invariant I of size greater � can be encoded by
dlog� jIje variables� For example the P�invariant �p�� p�� p�� p�� of the Petri net in �gure
� can be encoded as follows�

place traditional new
p� ���� ��
p� ���� ��
p� ���� ��
p� ���� ��

In the new encoding scheme we only need � variables as opposed to � variables in
the traditional scheme� Hence we search for a combination of P�invariants and places
such that all places of the Petri net are covered and the encoding cost is minimal� We
can formulate this problem as an integer linear program� This can be solved by standard
linear programming tools� Applying this to our example� we get a cover with the following
components�

�p�� p�� p�� p���p�� p�� p�� p���p	� p��� p��� p����p	� p��� p��� p����p���p
�

We need only �� variables instead of �� as in the one�variable�per�place encoding which
gives us an improvement of about 
���

After inspecting the components we recognize an overhead in the encoding� Some
places are represented twice� p�� p�� p	 and p���

Ideally we need a cover of the places with nearly the same characteristics as above but
where each place is uniquely represented� Looking back to section � we have a clustering
of places which is nearly su�cient� This leads us to an even more compact encoding�

�p�� p�� p�� p���p�� p���p	� p��� p��� p����p��� p����p���p
�

We obtain an encoding which uses only � variables� This improves the traditional scheme
of approximatly ����
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The problem with this cover is that a cluster can be empty� E�g� look at cluster
�p�� p�� which is not a P�invariant� Thus we have additionally to encode the emptiness
of a cluster�

We divide the clusters into three partitions� The �rst partition contains all clusters
which are P�Invariants� For those clusters we don�t need to encode their emptiness� In
the second partition we have all those clusters which are not P�Invariants and have a size
not equal to a power�of�two� Here we have at least one unused encoding which can be
used to represent the cluster emptiness� The last partition contains those clusters which
are not P�Invariants and have a size equal to a power�of�two� We suggest two ways to
encode the emptiness information for this kind of clusters�

First we can add to each such cluster an additional variable to represent the empti�
ness� This is the easiest way to solve the problem but has the drawback that the number
of needed variables increases� For a small number of clusters this may be neglectable�

The second way modi�es the transition encoding� For each cluster C in the third
partition we select a place p and a smallest P�invariant which contains p� When place p in
cluster C is marked� the meaning depends on the marking of the places in the associated
P�invariant� If there is another place marked in the P�invariant� the meaning is that C
is empty� because there can only be one place marked in a P�invariant� Otherwise the
meaning is as usual that p is marked�

Hence we have to change the transition encoding for all transitions which are related
to such places� Additionally we have to consider the associated P�invariants� This way
to solve the emptiness problem adds some complication to the transition encoding but
safes the needed number of variables� After some experiments we found out that the
number of variables has more in
uence on the e�ciency of state space generation than
the transition relation complexity� Thus we decided to use the second approach�

As mentioned in the introduction� the variable order can also have a great in
uence
on the BDD size� Therefore we combine the concept of cluster ordering from section �
with the compact cluster encoding from this section� This improves further our approach�

� Experimental results

In this section we want to illustrate the practicality of the presented suggestions by
applying them to a set of benchmarks� We have implemented the symbolic reachability
set computation ��
 with the CUDD BDD package �� The presented results have been
obtained by executing the algoritms on a SUN Ultasparc � with ���MB main memory�
We have resticted the available main memory to ���MB�

The selected benchmarks have been choosen because they are scalable and used in
many other publications�

The �rst benchmark is the well�known dining philosophers ��
 as shown in �gure ��
The second benchmark models a protocol for Local Area Networks called slotted ring ��
�
The last benchmark models a simple manufacturing system with some pushers which

�University of Colorado at Boulder
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benchmark no� random order � clustering order clustering order �
places dynamic reorder dynamic reorder

Time BDD size Time BDD size Time BDD size
�� phil �� ����� ��� ���� �		 ���� �	�
�� phil ��� ������ ���� ���� ��	 ���� ��	
�� phil ��� ������ �	�� ���� ���	 ����� ���	
�� phil ��� ������ �	�� ���� �	�� ������ 	���
	� phil �	� �	����� ����� ����� ���� ���	��� �	���

� slotted ring �� ���	 ��� ���� �� ���� ��
� slotted ring �� ���� ��� ���� ��� ���� ��	
� slotted ring �� ����� �	� ����� ��� ����� ���
� slotted ring �� ������ ��	 ������ ��� ����� ���
� pusher �� ���� ���� ���� ��� ���� ���
� pusher �� ���� ���� 	��� ���� ���� ��	�
� pusher ��� ������ ����� ����� ����� ����� ����
� pusher �	� ��	���	 ������ �����		 ������ �����	 �����

Table �� Experimental results �clustering order�

move a work piece from one place to another� Each pusher is driven by electric motors
which can be controlled by corresponding relays into two moving directions ��
�

In table � we have applied the clustering order algorithm from section � to the set
of benchmarks� For this� we have made three runs� One with random variable order and
dynamic reorder� one with the clustering order� and at last the former with additional
dynamic reorder� We have omitted the case of random variable order without dynamic
reorder� because it always exceeds the ���MB limit� The measured times �in seconds�
are only the times for constructing the BDD� For all benchmarks the needed time to
construct the P�invariants is neglectable�

The comparison of the results in table � shows that the application of a variable
order algorithm based on P�invariants yields reduction in time and space� The ratio of
improvement is comparable with ���
� It is remarkable that the clustering order with�
out dynamic reorder behaves better than random order with dynamic reorder� In some
benchmarks� esp� dining philosophers� it even beats the case with dynamic reorder�

Table � shows the results of applying the compact encoding method from section 	 to
the same benchmarks as before� There is one column for compact encoding and one for
the previous with additional dynamic reorder� As can be seen� compact encoding with
dynamic reorder is superior to the clustering order approach� Even the compact encoding
method alone beats in many examples the clustering order approach� As mentioned
before� the dining philosophers example behaves very good�natured� It was possible to
construct the reachability set of ���� philosophers in fewer than an hour of computation
time�
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benchmark no� no� no dynamic reorder dynamic reorder
variables states Time BDD size Time BDD size

�� phil �� ��� � ��� ���� ��� ���� ���
�� phil �� ��� � ���� ���� ��� ���� ���
�� phil ��� ��� � ���� ���� ��� ���� 	��
�� phil ��� ��� � ���� ���� ��� ���	� ���
	� phil ��� ��
 � ���� ���� ���� ������ ��	�

� slotted ring �� ���� ���� �� ���� ��
� slotted ring �� ��� � ��� ���� �� ���� ��
� slotted ring �� 
�� � ��� ����� ��� ���� ���
� slotted ring �� ��� � ���� 	����� ��� ���		 ���
� pusher �� ��� ���� ��� ���� ���
� pusher �� ��� � ��� ���� ���� ���� ���
� pusher 	� ��� � ��� ������ ����� ����� �	�
� pusher �� ��� � ��� �	����	 ����	� 	���� ��	
���� phil ���� ��� � ����� ���	��� ����� � �

Table �� Experimental results �compact encoding�

� Conclusion

The size of BDDs plays a major role in the computation of the reachability set and as
such for the veri�cation process� In this paper we have proposed two ways to improve
the BDD representation of state spaces for safe Petri nets� The �rst approach attempts
to obtain a good variable order and thus to reduce the BDD size� The second approach
extends the former method by compacting the state encoding� Both methods are based
on structural properties of Petri nets� precisely one�token�P�invariants� The experiments
from section � verify the e�ciency increase of both approaches� It also shows that the
compact encoding method is superior to the clustering method� With the compact state
encoding method it was even possible to generate such a huge state space as for ����
dining philosophers�
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