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Abstract: In this paper we combine structural analysis of Petri nets with the symbolic
representation of state spaces by Binary Decision Diagrams (BDDs). The size of a BDD
is determined by the number of its variables and by their order. We suggest two methods
based on structural properties (precisely one-token-P-invariants) which improve the en-
coding of states. One method attempts to derive a good variable order. The other tries
to reduce the needed number of variables by compacting the encoding of states.
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1 Introduction

Petri nets have been used to model various concurrent systems such as network protocols,
asynchronous circuits, control software for manufacturing systems, and so on. For the
formal verification of practical systems, it is very important to avoid state explosion.
Symbolic manipulation based on Binary Decision Diagrams (BDDs) has succeded in
handling huge state spaces [6, 5].

The size of a BDD affects the memory and CPU requirements and thus plays an
important role for the success of a verification process. The number of BDD nodes



(i.e. the BDD size) is influenced by the number of variables and by their order [3].
One important feature of Petri nets are their structural properties which can be easily
obtained by linear algebraic techniques. We suggest two methods that use one-token-P-
invariants to attack the blowup of BDDs. The first method attempts to obtain an order
of the variables such that the size of a BDD will be close to the optimal. This approach
resembles [10] but uses P-invariants instead of the Petri net unfolding.

The second method is based on the observation that the state space of a Petri net
is very sparse. For example, it is not surprising that a Petri net with a hundred places
has 10,000 reachable states: its theoretical state space (21°°) is approximately 10?° larger
than the reachability set [13]. Taking this under consideration we give a dense encoding
scheme for the states of a Petri net using also P-invariants. This results in a reduction
of the number of variables and therefore in a reduction of the BDD size.

The rest of this paper is organized as follows. In the following two sections, we
briefly review the theory of Petri nets and BDDs. In section 4, we propose a method to
obtain good variable orders for BDDs. In the next section, a method for compacting the
encoding of states is presented. Section 6 includes experimental results. Finally we give
a brief conclusion.

2 Petri nets

Petri nets are a bipartite graphs which are a mathematical formalism adequate to de-
scribe non-sequential behavior such as concurrence and non-deterministic choice. A
Petri net is defined as follows:

Definition 1 (Petri net) A Petri net N = (P, T, F,my) consists of

1. Finite, nonempty sets P and T such that PNT = (. Elements of P and T are
called places and transitions, respectively.

2. A mapping F: (P xT)U (T x P) — N.
3. A mapping mgy : P — N, called the initial marking.

This type of a Petri net is also called Place/Transition Net. As usual we use the following
notations:

1. The pre- and postsets of a transition resp. of a place x are given by ex = {y €
PUT:F(y,x) >0} and xe = {y € PUT : F(x,y) > 0},

2. For each transition ¢t € T' the mappings t~,t* : P — N are defined by ¢t~ (p) :=
F(p,t) and t*(p) := F(t, p).

3. At:=tt -t~

A marking (or also called state) of a Petri net is a function m : P — N, where m(p)
denotes the number of tokens on a place p. A transition ¢ € T is enabled (may fire) under



a marking m iff t= < m (i.e. t7(p) < m(p) for each place p € P). When an enabled
transition ¢ fires under a marking m, a new marking m’ given by m/(p) := m(p) + At(p)
is reached. The set of markings that can be reached from the initial marking mg via all
possible firings of transitions is called the reachability set (or state space) and is denoted
by [my).

A Petri net is called safe (1-bounded) iff m(p) < 1 for every p € P and every marking
m reachable from the initial marking mq (i.e. m € [my)). In this paper we only deal with
safe Petri nets.

A place invariant (or for short P-invariant) ¢ has the property that for every reachable
marking m € [my) the equation i-m = i-mg holds. In other words, the number of tokens
weighted by the P-invariant ¢ is constant in all reachable markings. More formally [7], a
mapping i : P — Z is called a P-invariant iff for every transition ¢ holds

Y ilp) =" ip)

pEel pEte

For every place p € P with mg(p) = 1 we can compute the one-token-P-invariants
it is contained in by solving the above system of linear equations, where i(p) = 1 and
i(q) = 0 for each place ¢ € P, ¢ # p and m(q) = 1. If for a solution of the system for all
q € P,i(q) € {0,1} holds then all places with i(¢) = 1 form a one-token-P-invariant. The
computation of this specific system of linear equations can easily be done by a variant
of the Gauss elimination algorithm [12]. One-token-P-invariants have the property that
under all reachable markings always exactly one place in every one-token-P-invariant is
marked. In the sequel of this paper we only handle one-token-P-invariants and call them
for short P-invariants.

For a more detailed introduction into Petri net theory we refer e.g. to [7, 11].

3 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are complete binary trees that represent the result of
a sequence of two-way (binary) choices. Bryant |2] introduced a graph representation for
these binary trees that can be used to represent Boolean formulas. The representation
proposed by Bryant assumes a linear order on the Boolean variables appearing in the
Boolean formula. The order on the variables determines the order of the decisions made
in the BDD, starting from the root. BDDs are obtained from the ordered binary trees
by applying the following two transformations:

1. Combine isomorphic subtrees into one single tree.

2. Eliminate nodes whose left and right children are isomorphic.

One achives a very compact and canonical representation for Boolean formulas. BDDs
are often substantially more compact than traditional normal forms such as conjunctive
normal form and disjunctive normal form, and they can be manipulated very efficiently.
Bryant gave algorithms of linear complexity for computing the BDD representation of



a<b<c<d

Figure 1: An example of different orders of variables.

Boolean binary operations on two formulas represented by BDDs [2]. It has been noted
that the size of BDDs depends heavily on the order of the variables in the formula.

For example in figure 1 the formula (a < b) A (¢ < d) is given with two different
orders. A dashed (solid) line indicates the branch when the decision variable is 0 (1). In
general, the size of BDDs can be exponential in the number of variables. However, in
practical examples BDDs have usually a smaller size when an appropiate ordering of its
variables is used.

The use of BDDs for analysis of Petri nets has been explained in [9]. A marking of
a Petri net can be represented by means of a Boolean vector M € 2P, The fact that a
place p; is marked is denoted by the value true for M[i]. A Boolean formula can also
be seen to be a representation of a set of Boolean vectors. A Boolean vector is in the
set, represented by the Boolean formula, iff the assignment to the variables evaluates
to true. This kind of representation is called characteristic function of a set. Hence
the reachability set of a given Petri net N can be represented by a Boolean formula,
which evaluates to true for all Boolean vectors representing a reachable marking of V.
Using structural information about a Petri net and standard Boolean functions such as
quantification and substitution, the BDD representation of the reachability set can be
constructed. Algorithms for this kind of computation are developed and presented in [9].

4  Obtaining good variable orders

As indicated earlier, obtaining a good ordering of variables such that the size of the BDD
will be close to the optimal is very important for efficient reachability set generation.
Consider the BDD built from the formula

(aN=bA=cA=d)V(maANDA=cA=d)V (maA=bAcA=d)V (—aA=bA-cAd)

which is given in figure 2. It represents 4 Boolean vectors where in each vector only one
variable is set to true. Associating one place of a Petri net with one variable of the



Figure 2: Example BDD

Boolean formula, the formula represents 4 markings where always exactly one place is
marked. Note that for a set of markings with the above characteristic, the size of the
BDD grows linear with the number of variables (places) and remains the same for all
possible orderings.

Taken this under consideration, we try to divide the places of a Petri net into clusters.
Each cluster has the property that the places in the cluster cannot be marked simultan-
iously. As suggested in section 2, the information gained by one-place-P-invariants are a
good starting point for such a division. We use the heuristic algorithm proposed in [10]
to partition the set of places into clusters.

= P-invariants;
; /* set of clusters */
:= list of places; /* ordered in ascending order of their
number of containment in different P-invariants */

7 :
C:
P

while not_empty(P) do
p := head(P);
find a cluster ¢ € C such that Vg € ¢ di € Z with p,q € 7;
if such cluster ¢ € C exists then

c:=cU{p}
else
¢:—cuiiph}
fi
od

This is a greedy algorithm which does not check all possible clusterings of a Petri net.
Due to the ascending order, the places which can be included into the largest number of
P-invariants will be considered last. Hence we will obtain a balanced number of places
in each cluster, which results in a better BDD size [10].



Figure 3: Two dining philosophers

After obtaining a division of the places into clusters we need a way to order the
clusters with the same goal — to minimize the size of the BDD. For each pair of clusters
(¢, ¢j) we calculate the number of pairs of places (p;,p;) with p; € ¢; and p; € ¢;, such
that there exists a P-invariant ¢ with p;, p; € 4. This leads to a graph with clusters as ver-
tices and weighted edges between them. The weights indicate the degree of dependence
between the clusters. Considering this information we apply a simple greedy algorithm
[10] which orders the clusters according to their degree of dependence.

= set of clusters;

C:
L= 0;

for each cluster compute the sum of his edge-weights;
choose cluster with highest sum;
append cluster to L;

while not _empty(C) do
foreach cluster left in C do
compute the sum of all edge-weights connected to already choosen clusters
od
choose cluster with highest sum;
append cluster to £
od

As an example we look at the Petri net in figure 3. There are obviously 6 one-

token-P-invariants: i1 = (p1, 2, Pa, Ps), %2 = (P1,D3,P5,P6), i3 = (P9, P10, P12, P14), 14 =
(p97p11,p13,p14), 5 = (p47p67p87p137p14) and i = (p57p67p7;p127p14)- After applying the
first algorithm we obtain 6 clusters ¢; = (p1, p2, P4, P6), C2 = (3, P5), c3 = (P7,P14), C4 =



(ps), ¢5 = (P9, P10, P12) and ¢g = (p11,p13). They have to be ordered by the second algo-
rithm such that we get the following variable order (p1, p2, pa, Ps, P3, Ps, P75 P14, Pos P10, P12,
P11, P13, Ps)-

For further improvements we could order the places in a cluster by their number of
common P-invariants with places in the two neighbour clusters.

5 Compact state encoding

One important feature of Petri nets is that their state spaces are usually very sparse.
The traditional one-variable-per-place encoding disregards this point.

One-token-P-invariants give us a direction to improve the standard encoding. As
mentioned before, one-token-P-invariants have the property that always exactly one
place is marked. Therefore it is enough to encode only the number of the currentlymarked
place instead of the whole vector. A P-invariant Z of size greater 1 can be encoded by
[log, |Z|] variables. For example the P-invariant (pi, pe, ps, ps) of the Petri net in figure
3 can be encoded as follows:

place | traditional | new
D1 0001 00
D2 0010 01
D4 0100 10
Ds 1000 11

In the new encoding scheme we only need 2 variables as opposed to 4 variables in
the traditional scheme. Hence we search for a combination of P-invariants and places
such that all places of the Petri net are covered and the encoding cost is minimal. We
can formulate this problem as an integer linear program. This can be solved by standard
linear programming tools. Applying this to our example, we get a cover with the following
components:

(ph P2, P4, ps) (ph Pps3, Ps, ps) (p97 P10, P12, p14) (pg, P11, P13, p14) (p7) (ps)

We need only 10 variables instead of 14 as in the one-variable-per-place encoding which
gives us an improvement of about 30%.

After inspecting the components we recognize an overhead in the encoding. Some
places are represented twice: pq, pg, pg and pi4.

Ideally we need a cover of the places with nearly the same characteristics as above but
where each place is uniquely represented. Looking back to section 4 we have a clustering
of places which is nearly sufficient. This leads us to an even more compact encoding.

(ph P2, P4, pﬁ) (paa P5) (P9, P1o, P12, p14) (pn, p13) (p7) (ps)

We obtain an encoding which uses only 8 variables. This improves the traditional scheme
of approximatly 40%.



The problem with this cover is that a cluster can be empty. E.g. look at cluster
(p3,ps) which is not a P-invariant. Thus we have additionally to encode the emptiness
of a cluster.

We divide the clusters into three partitions. The first partition contains all clusters
which are P-Invariants. For those clusters we don’t need to encode their emptiness. In
the second partition we have all those clusters which are not P-Invariants and have a size
not equal to a power-of-two. Here we have at least one unused encoding which can be
used to represent the cluster emptiness. The last partition contains those clusters which
are not P-Invariants and have a size equal to a power-of-two. We suggest two ways to
encode the emptiness information for this kind of clusters.

First we can add to each such cluster an additional variable to represent the empti-
ness. This is the easiest way to solve the problem but has the drawback that the number
of needed variables increases. For a small number of clusters this may be neglectable.

The second way modifies the transition encoding. For each cluster C' in the third
partition we select a place p and a smallest P-invariant which contains p. When place p in
cluster C' is marked, the meaning depends on the marking of the places in the associated
P-invariant. If there is another place marked in the P-invariant, the meaning is that C'
is empty, because there can only be one place marked in a P-invariant. Otherwise the
meaning is as usual that p is marked.

Hence we have to change the transition encoding for all transitions which are related
to such places. Additionally we have to consider the associated P-invariants. This way
to solve the emptiness problem adds some complication to the transition encoding but
safes the needed number of variables. After some experiments we found out that the
number of variables has more influence on the efficiency of state space generation than
the transition relation complexity. Thus we decided to use the second approach.

As mentioned in the introduction, the variable order can also have a great influence
on the BDD size. Therefore we combine the concept of cluster ordering from section 4
with the compact cluster encoding from this section. This improves further our approach.

6 Experimental results

In this section we want to illustrate the practicality of the presented suggestions by
applying them to a set of benchmarks. We have implemented the symbolic reachability
set computation [9] with the CUDD BDD package !. The presented results have been
obtained by executing the algoritms on a SUN Ultasparc 1 with 128MB main memory.
We have resticted the available main memory to 100MB.

The selected benchmarks have been choosen because they are scalable and used in
many other publications.

The first benchmark is the well-known dining philosophers [9] as shown in figure 3.
The second benchmark models a protocol for Local Area Networks called slotted ring [9)].
The last benchmark models a simple manufacturing system with some pushers which

!University of Colorado at Boulder



benchmark no. random order + clustering order clustering order +
places | dynamic reorder dynamic reorder
Time | BDD size | Time | BDD size | Time | BDD size
10 phil 70 10.10 448 0.17 355 0.16 358
20 phil 140 100.68 1673 1.13 735 1.13 735
30 phil 210 | 642.64 8516 3.36 1125 69.18 1125
40 phil 280 | 988.78 6599 6.79 1537 337.11 5303
50 phil 350 | 2526.10 12114 11.81 1961 1045.82 15429
2 slotted ring | 20 0.05 283 0.03 68 0.03 68
4 slotted ring | 40 4.22 238 1.37 208 2.30 195
6 slotted ring | 60 23.36 452 36.77 420 14.39 436
8 slotted ring | 80 114.32 805 897.28 704 79.72 703
2 pusher 42 0.66 1293 0.26 299 0.26 299
4 pusher 78 9.12 2182 5.93 2303 6.63 1156
6 pusher 114 102.41 16778 81.68 16821 22.79 1117
8 pusher 150 | 1650.25 | 108281 | 1160.55 | 119266 | 969.85 70331

Table 1: Experimental results (clustering order)

move a work piece from one place to another. Each pusher is driven by electric motors
which can be controlled by corresponding relays into two moving directions [8|.

In table 1 we have applied the clustering order algorithm from section 4 to the set
of benchmarks. For this, we have made three runs: One with random variable order and
dynamic reorder, one with the clustering order, and at last the former with additional
dynamic reorder. We have omitted the case of random variable order without dynamic
reorder, because it always exceeds the 100MB limit. The measured times (in seconds)
are only the times for constructing the BDD. For all benchmarks the needed time to
construct the P-invariants is neglectable.

The comparison of the results in table 1 shows that the application of a variable
order algorithm based on P-invariants yields reduction in time and space. The ratio of
improvement is comparable with [10]. It is remarkable that the clustering order with-
out dynamic reorder behaves better than random order with dynamic reorder. In some
benchmarks, esp. dining philosophers, it even beats the case with dynamic reorder.

Table 2 shows the results of applying the compact encoding method from section 5 to
the same benchmarks as before. There is one column for compact encoding and one for
the previous with additional dynamic reorder. As can be seen, compact encoding with
dynamic reorder is superior to the clustering order approach. Even the compact encoding
method alone beats in many examples the clustering order approach. As mentioned
before, the dining philosophers example behaves very good-natured. It was possible to
construct the reachability set of 1000 philosophers in fewer than an hour of computation
time.



benchmark no. no. no dynamic reorder | dynamic reorder
variables states Time | BDD size | Time | BDD size
10 phil 40 4.7 x 108 0.11 204 0.11 204
20 phil 80 2.2 x 10 0.80 424 0.80 424
30 phil 120 1.0 x 10% 2.28 644 6.24 531
40 phil 160 4.8 x 10% 4.44 864 11.53 793
50 phil 200 2.3 x 10% 7.69 1088 176.38 1351
2 slotted ring 10 2164 0.01 28 0.02 27
4 slotted ring 20 8.2 x 104 0.48 92 0.47 92
6 slotted ring 30 3.7 x 107 16.73 188 3.34 184
8 slotted ring 40 1.7 x 10' | 569.92 316 16.55 304
2 pusher 19 464 0.12 132 0.12 132
4 pusher 37 1.9 x 10* 4.49 2130 3.91 300
6 pusher 53 74 x 10° | 123.43 23197 16.39 153
8 pusher 69 2.9 x 107 | 2576.15 | 229652 52.10 365
1000 phil 4000 1.1 x 10%7 | 3285.73 22134 — —

Table 2: Experimental results (compact encoding)

7 Conclusion

The size of BDDs plays a major role in the computation of the reachability set and as
such for the verification process. In this paper we have proposed two ways to improve
the BDD representation of state spaces for safe Petri nets. The first approach attempts
to obtain a good variable order and thus to reduce the BDD size. The second approach
extends the former method by compacting the state encoding. Both methods are based
on structural properties of Petri nets, precisely one-token-P-invariants. The experiments
from section 6 verify the efficiency increase of both approaches. It also shows that the
compact encoding method is superior to the clustering method. With the compact state
encoding method it was even possible to generate such a huge state space as for 1000
dining philosophers.
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