
Algorithmic Aspects of Concurrent Automata

Peter Deussen

Brandenburg Technical University Cottbus
Computer Science Institute

—Data Structures and Software Dependability—
email: pd@informatik.tu-cottbus.de

tel: (+49-355) 69 3826, fax: (+49-355) 69 3820
Postbox 10 13 44, 03013 Cottbus, Germany

ABSTRACT. Partial order semantics of Petri nets have a long history. In this paper, we describe
a formalism which combines partial order semantics with the usual notion of markings of a Petri
net. We call this formalismconcurrent automata. We present a generation algorithm for concurrent
automata. We show that our algorithm is correct in the sense of semi language equivalence: The
generated automaton recognizes essentially the same set of semiwords as the associated Petri net.

Key words. Concurrent automata, Petri Nets, Partial Order Semantics, Semiwords, Semi
Languages.

1. Introduction

Partial order semantics of formalisms designed to describe concurrent systems have a long
history. Concentrating on Petri nets, instances of those semantics are processes [1], (prime) event
structures [11], partial words [6] and semiwords [12, 17], or branching processes [3]. Especially
a finite representation of a branching process of a 1-bounded Petri net, called thefinite prefix of
the maximal branching process of a Petri net (prefix, for short) has turned out as extraordinary
useful for analysis goals (see [9, 4] for available analysis techniques).

In this paper, we describe another formalism which combines partial order semantics with
the usual notion of markings of a Petri net. We call this formalismconcurrent automata. Con-
current automata have the benefit that concurrency of transitions does not necessarily lead to the
state explosion problem. Moreover, since global states (markings) are maintained, it is possible
to rejoin branching behaviour in opposite to branching processes.

Concurrent automata were originally introduced by Ulrich [15, 16]. Ulrich uses the termbe-
haviour machine. We prefer the term concurrent automaton because it seems to meet the crucial
point somewhat better. In [15], an algorithm for the construction of a behaviour machine is pre-
sented. This algorithm uses the prefix of a safe Petri net as input. As noted in [16], the algorithm
does not work correctly if the Petri net under consideration contains dead markings. Another
disadvantage is that the input prefix has to have certain structural properties, namely that each
cut-off event and at least one of its associated events have to be in the samelocal configuration

1



2 PETER DEUSSEN

(see [5] for the meaning of the termscut-off event and local configuration—a detailed expla-
nation is far beyond the scope of this paper). This implies that only the most inefficient cut-off
criterion for the generation of the prefix can be applied (see [5]).

In this paper, we present another generation algorithm which does not depend on the prefix
of a Petri net. We show that our algorithm is correct in the sense of semi language equivalence:
The generated automaton recognizes an essential subset of the set of semiwords generated by the
associated Petri net. Our algorithm is however restricted to safe Petri nets.

This paper is organized as follows: Section 2 describes the basic notations used in the follow-
ing, especially semiwords are introduced. In section 3, Petri nets are introduced and semiwords
are used to define partial order semantics for Petri nets. In dealing with Petri nets, we adopt
mostly the notations given in [14]. Section 4 addresses the existence and uniqueness of least
sequential semiwords, i. e. those semiwords which express the causal relation of the transitions
of a Petri nets mostly adequate. In section 5, concurrent automata are introduced. The semi lan-
guage of a concurrent automaton (w. r. t some Petri net) is defined. Definitions for the correctness
and completeness of a concurrent automaton are given. In Section 6, a construction algorithm
is described. It is shown that this algorithm is complete and correct in the sense of the previous
section 5. Finally, section 7 addresses open problems and further works.

An extended version of this paper will be published as [2], where also proofs omitted here
can be found.

2. Semiwords

To avoid tedious notions, we fix the following convention: If a structureS � hA�B� � � �i is
introduced, the components ofS will always be denoted byAS�BS� � � � .

We use the following notations:N andZ denote the sets of non-negative integers and in-
tegers, respectively. For some setA, P�A� denotes the set of all subsets ofA. For R � A�B
and a � A, we denote theimage of a underb by R�a� �df fb � B : a R bg. This notation is
extended to subsetsC � A by R�C� �df

S
a�C R�a�. R�1 � B� A denotes theinverse of R,

i. e, b R�1 a �df a R b. For each setA, idA � A� A denotes theidentity relation on A, i. e.
a idA b �df a � b. R� � A�A denotes the least transitive relation containingR � A�A. Let
R � A�A be a binary relation onA and B � A. B is calledpre-closed with respect toR iff
B � R�1�B�. A preorder on a setA is a irreflexive and transitive relation� � A�A. A par-
tial order on A is an asymmetric preordering onA. If � (�) denotes a preordering onA, then
��df �� idA (��df �� idA). Throughout this paper, we do not distinguish between mappings
f : A� B and their graphsfha�bi � A�B : b � f �a�g.

Let T be an alphabet. A(finite) labelled partial order (lpo) overT is a tuplea � hE���λ i,
whereE is a finite set ofevents, � � E �E is a partial order, andλ : E � T is a labelling
function.

Let a be a lpo over an alphabetT . We use the following notations:

1. The relationcoa � Ea�Ea is defined bye1 coa e2 �df ��e1�a e2� & ��e2�a e1�. A set
C � E is called aco-set iff we havee1 coa e2 for all e1�e2 �C such thate1 �j e2.

2. If t � T , the lpohf0g���fh0� tigi is called aletter. If no confusion can occur, we uset
both to denote an element ofT and its letter.

3. Theempty lpo is ε �df h�����i.
4. A semiorder is a lpo a where for alle1�e2 � Ea, e1 coa e2 	 λa�e1� �j λa�e2�. so�T �

denotes the class of semiorders overT .

DEFINITION 2.1 (Prefix and Sequentialization). Leta andb be lpo’s.

submitted toConcurrency Specification and Programming’98, Berlin, September 1998



ALGORITHMIC ASPECTS OF CONCURRENT AUTOMATA 3

a : t1 t2 t7 , b :
t4

t3 t6
t5

, c : t3 t4 t5 t6 , d :
t4

t3
t5

.

FIGURE 1. Some semiorders overT � fti : 1� i� 7g.

1. A mappingh : Eb � Ea is called apre-homomorphism iff e1 �b e2 impliesh�e1��a h�e2�
for all e1�e2 � Eb and furthermore,λa � λb 
h. It is called ahomomorphism iff it is a pre-
homomorphism with the propertyh���1

b �e�� ���1
a �h�e��.

2. b is called aprefix of a, denoted byb � a, iff there is an injective homomorphismh :
Eb � Ea We writeb� a, if b� a anda� b holds.

3. a is called asequentialization of b, denoted byb � a, iff there is a bijective pre-
homomorphismh : Eb � Ea.

4. If D � Ea, then we denote bya�D� the lpo generated by D in a: a�D� �df
hD��a� �D�D��λa� �D�T�i. Clearly, if D � ��1

a �D�, thena�D� � a. The required
homomorphismus is justidD. �

The notions introduced above are illustrated by the examples in figure 1. Event names are
omitted, only their labels are shown. The order relation is figured by arrows. Transitive arcs are
omitted. We haveb� c andd � b.

DEFINITION 2.2 (Partial words and Semiwords). Apartial word is an equivalence class
(w. r. t.�) of lpo’s. A semiword is an equivalence class of semiorders. We write�a� � �Ea��a�λa�
to denote the equivalence class of a lpoa. The same notion applies to semiwords. Asemi lan-
guage is a set of semiwords.sw�T � denotes the class of semiwords overT . �

We fix the following conventions: Ifa, b, c, � � � are lpo’s or semiorders, then we use boldfaced
lowercase lettersa, b, c, � � � , to denote its equivalence class�a�� �b�� �c�� � � � . Hence, for instance,
Ea will always refer to the event set of a representant of the partial worda � �a�. The equivalence
class ofε will also be denoted byε. Especially, ift is a letter, we uset to denote the semiword
�t� � �f0g���fh0� tig�.

It is easy to prove the following lemma:

LEMMA 2.3. Both � and � are preorderings on the class of lpo’s. � is an equivalence
relation. a� b iff a� b and b� a. If we put a� b�df a� b, and a� b�df a� b for all a � a,
b� b, then� and� are reflexive partial orderings on partial words and semiwords, respectively.

3. Partial Order Semantics of Petri Nets

A net hP�T�Fi consists of non-empty, finite setsP andT such thatP� T � �, where the
elements ofP andT are calledplaces andtransitions, respectively, and aflow relation F � �P�
T ���T �P�. We assume a net to be connected, i. e.P�T � �F �F�1���x� for eachx� P�T . A
state or marking of a nethP�T�Fi is a mappingm : P� N. If hP�T�Fi is a net andm is a marking
of N, we call the tupleN � hP�T�F�mi a Petri net. m is called theinitial marking of N.

Figure 2 gives an example of a Petri net. Places are figured as circles, transitions as rect-
angles, and the flow relation is indicated by arcs. Black dots (tokens) are used to indicate a
markingm of the net. In this example,m�p1� � 1, andm�p� � 0 for all places different fromp1.

The mappings�
����
�� : TN � �PN � N�, and∆ : TN � �PN �Z� are defined to be

t��p� �df

�
1� if p FN t�
0� otherwise,

t��p� �df

�
1� if t FN p
0� otherwise,

and ∆ t �df t�� t� �component wise��

submitted toConcurrency Specification and Programming’98, Berlin, September 1998



4 PETER DEUSSEN

p1�

p2 p3 p4

p5 p6

p7

t1 t3

t2 t4 t5

t6

t7

FIGURE 2. A Petri netN

Let a be a semiorder over the transition setTN of a Petri netN. For eache � Ea we define
e� �df λa�e��, e� �df λa�e��, and∆e �df ∆λa�e�. ForD � Ea we defineD� �df ∑e�D λa�e��,
D� �df ∑e�D λa�e��, and∆D �df ∑e�D ∆λa�e�, where∑ is understood component wise.

A lpo a is calledenabled at a markingm of N iff for all co-set C of a we have:C� �

m�∆���1
a �C��. We writem

a
��	, if a is enabled atm. Thesuccessor marking m� of m anda is

m� � m�∆Ea. In this case, we writem
a

��	m�. By

LN�m� �
n

a � sw�TN� : m
a

��	
o

we denote thesemi language of a Petri netN and a markingm of N. The set

RN�m� �
n

m� � �PN � N� : �a �LN�m�
�

m
a

��	 m�
�o

denotes the set of markings reachable from a markingm of N. A Petri netN is calledk-bounded
iff there is somek � 0 such thatm�p� � k for all m �RN�mN� andp � PN. It is calledsafe if it
is 1-bounded. A markingm �RN�mN� is calleddead iff m�j t� for all t � TN . A transitiont is
called life inN iff for all m �RN�mN� there is somem� �RN�m� such thatm� t�.

The semiorders shown in figure 1 are all enabled at the initial marking of the Petri net in
figure 2.

THEOREM 3.1 (Starke [13]). If m
a

��	, then m
b

��	 for each a � b, i. e. LN�m� is pre-

closed w. r. t. �. If m
a

��	 m�, then m
b

��	 m� for each a � b, i. e. LN�m� is pre-closed w. r. t.
��1.

4. Least Sequential Semi Languages

We now address the following problem: IfLN�mN� is the semi language of a Petri netN, is
it possible to find another semi languageS �LN�mN� such that��S � �LN�mN�? Is there a
uniquely defined minimal semi languageS with this property? These questions will be answered
positively in the following; thisleast sequential semi language will be denoted bySN�mN�.

submitted toConcurrency Specification and Programming’98, Berlin, September 1998



ALGORITHMIC ASPECTS OF CONCURRENT AUTOMATA 5

Another problem we have to solve is: Given two least sequential semiwordsa andb such

thatm
a

��	m� b
��	 holds for reachable markingsm, m� of a Petri netN, can we find an operation

� on semiwords such thata�b is again the least sequential semiword withm
a�b
���	?

Let N be a safe Petri net and leta �LN�mN�. DefineA�e� �df FN�λa�e���F�1
N �λa�e�� for

eache � Ea.

LEMMA 4.1. Let N be a safe Petri net and let a �LN�mN�. Then for all e�e� � Ea we have
A�e��A�e�� �j �	 e�a e� � e� �a e,

PROOF (Sketch). Assumee�e� � Ea such thatA�e��A�e�� �j � ande coa e�, i. e.C � fe�e�g
is a co-set. IfF�1

N �λa�e���F�1
N �λa�e��� �j �, we would have�mN �∆��1

a �C���p� � 1 for each
p � F�1

N �λa�e���F�1
N �λa�e���, If FN�λa�e���FN�λa�e��� �j �, then�mN �∆��1

a �C���p� � 1
for each p � FN�λa�e�� � FN�λa�e���. Finally, FN�λa�e�� � F�1

N �λa�e��� �j � implies �mN �

∆��1
a �feg���p�� 1 for eachp � FN�λa�e���F�1

N �λa�e���. In any case, the safety ofN would be
contradicted. �

LEMMA 4.2. If a is a semiword over the transition set TN of a safe Petri net N and m �

RN�mN� is a reachable marking of N, then m
a

��	 iff for each e�Ea we have m�∆��1
a �e�� e�.

PROOF. (	� Assumem
a

��	. Let C be a co-set ofa. Thenm�∆��1
a �C� � C�, which

implies m�∆��1
a �C� � e� for eache � C. By lemma 4.1 we haveA�e��A�C���1

a �e�� �
�, which implies�m�∆��1

a �C���1
a �e����p� � m�p� for eachp � A�e�. We conclude�m�

∆��1
a �C���p� � �m�∆��1

a �e���p�. Thenm�∆��1
a �e�� e� by assumption.

(�) Assumem�∆��1
a �e�� e� for eache � Ea. LetC be a co-set ofa. First, we may note

thatC��p�� 1 for eachp � PN , becauseC��p�� 1 would imply that there are eventse1�e1 �C,
e1 �j e2, such thatp � F�1

N �λa�e1���F�1
N �λa�e2��, which impliesA�e1��A�e2� �j �. But then

e1 �a e2 or e2 �a e1 by lemma 4.1, andC would not be a co-set. Suppose�m�∆��1
a �C���j C�,

i. e., there is some placep� PN such that�m�∆��1
a �C���p��C��p�, i. e.�m�∆��1

a �C���p��
0 andC��p� � 1. By assumption we have�m�∆��1

a �e���p�� 1, i. e there must be at least some
evente� ���1

a �C���1
a �e�� such thatp � F�1

N �λa�e���. But this is impossible because of lemma
4.1. We concludem�∆��1

a �C��C�. �

Lemma 4.2 provides an inductive proof method for enabledness proofs. To prove that a
semiordera is enabled at a markingm of a safe Petri netN, it has to be shown that for eache� Ea

the implication�e� � Ea�e� �a e & m�∆��1
a �e�� � e���	 m�∆��1

a �e� � e� is true. As an
application of the principle of Noetherian Induction, it is allowed to concludem���1

a �e�� e�

for eache � Ea, hence, by lemma 4.2,m
a

��	.
The following theorem states that if we consider safe Petri netsN, for each member of the

semi language ofN it exists a uniquely defined least sequential semiword. This is not true for
non-safe nets, as the example in figure 3 shows: The semiwordc is a sequentialization of botha
andb, but neithera� b norb� a holds.

The theorem resembles (the second part of) theorem 2.2.9 in [17]. Vogler uses aprocess
semantics for Petri nets, which is not considered in this paper. We give a direct proof.

THEOREM 4.3. Let N be a safe Petri net and let a � LN�mN�. Then the set ��1�a��
LN�mN� contains a uniquely defined least element with respect to �, namely the semiword
a� �df �Ea�R��λa�, where e R e��df e �a e� & A�e��A�e�� �j �.

PROOF. Clearly, the operation�
�� is well-defined. We have to prove the following proper-
ties ofa�:

submitted toConcurrency Specification and Programming’98, Berlin, September 1998



6 PETER DEUSSEN

�

�

t2

t1
t3

a :
t1 t3

t2
, b :

t1

t2 t3
, c :

t1
t3

t2
�

FIGURE 3. A Petri netN and some of its semiwords.a � c andb � c, but
neithera� b norb� a.

(1)�a� is a partial order. This follows from the fact that�a is a partial order.
(2) a� � LN�mN�. Because of lemma 4.2 it is enough to show that for alle � Ea, if

�a����1
a�

�e��� � LN�mN�, then�a����1
a�

�e��� � LN�mN�. Let e � Ea and assume�a����1
a�

�e��� �
LN�mN�. We have

fe� � A : e� �a� e & A�e��A�e�� �j �g � fe� � A : e� �a e & A�e��A�e�� �j �g

by lemma 4.1, which impliesm�∆��1
a�

�e� � m�∆��1
a �e�. Thenm�∆��1

a �e� � e� implies

m�∆��1
a�

�e�� e�.

(3) a� is least sequential. Clearlya� � a. Suppose someb ���1 �a��LN�mN�. Then there
are bijective pre-homomorphismsh : Eb � Ea andg : Ea� � Ea. Let f : Ea� � Eb � h�1
g. We
want to show thatf is a bijective pre-homomorphism, i. e.,a� � b. Bijectivity follows from the
bijectivity of h andg. Obviously,λb � λa� 
 f .

Sincef , g, andh are bijective, we must haveg� h
 f . Lete1�e2� Ea� and assumee1 �a� e2.
ThenA�e1��A�e2� �j �. e1 �a� e2 impliesg�e1��a g�e2�. On the other hand,A�e1� � A� f �e1��
andA�e2� � A� f �e2��, which impliesf �e1��b f �e2� or f �e2��b f �e1� by lemma 4.1.f �e2��b

f �e2� is impossible because this would implyg�e1� � h� f �e2�� �a h� f �e1�� � g�e1�. We con-
clude f �e1��b f �e2�. �

DEFINITION 4.4. LetN be a safe Petri net and letm �RN�mN�. We put

SN�m� �df

n
a� � sw�TN� : a �LN�m�

o
�

Furthermore, we define an operation�N : so�TN�� so�TN�� so�TN� on semiorders overTN by
a�N b �df

�
Ea�Eb���a��b�R�� �λa� λb

�
, whereEa �Eb � � is assumed.R � Ea�Eb is

defined bye R e��df A�e��A�e�� �j �. For semiwordsa�b, we puta�N b �df �a�N b�. �

Clearly,�N (on semiwords) is a well-defined operation.

COROLLARY 4.5. If N is a safe Petri net and m �RN�mN�, then ��SN�m�� �LN�m�.

COROLLARY 4.6. Let N be a safe Petri net and let a �SN�m�, b �SN�m�� be semiwords

such that m
a

��	 m� b
��	 for markings m�m� �RN�mN�. Then a�N b �SN�m�.

PROOF. We havea�N b � �a�N b�� due to theorem 4.3. �

submitted toConcurrency Specification and Programming’98, Berlin, September 1998



ALGORITHMIC ASPECTS OF CONCURRENT AUTOMATA 7

A: mN m

fa�bg

fcg

a :
t4

t3 t6
t5

, b : t1 t2 , c : ft7g.

FIGURE 4. A concurrent automatonA to the net in figure 2.

5. Concurrent Automata

DEFINITION 5.1 (Concurrent Automaton). Aconcurrent automaton over an alphabetT is
a tupleA � hM�R�Λ �mi comprising a finite setM of states, a transition relation R�M�M, an
arc labelling function Λ : R�P�so�T ��, and aninitial state m � M. A concurrent automaton
of a Petri netN is a concurrent automaton overTN such thatM �RN�mN� andm � mN holds.�

Figure 4 shows a concurrent automaton of the Petri net in figure 2. The markingm is given
by m�p7� � 1 andm�p� � 0 for all places different fromp7.

DEFINITION 5.2 (Semi Language of a Concurrent Automaton). LetA be a concurrent
automaton of a Petri netN. A path throughA is a finite sequence of statesα � mAm1m1 � � �mn

(n� 0) such thatmA RA m1, m1 RA m2, � � � , mn�1 RA mn. LetP�A� denote the set of pathes through
A.

If α is a path throughA as given above, thenSA�α � is defined by

a �SA�α � �df a � a1�N a2�N 
 
 
�N an

& a1 � ΛA�mA�m1� & a2 � ΛA�m1�m2� & 
 
 
 & an � ΛA�mn�1�mn�

Thesemi language of A is the setL �A� �df
S

α�P�A�L �α �. �

DEFINITION 5.3 (Correctness and Completeness). A concurrent automaton of a Petri netN
is calledcomplete iff L �A��SN�mN� holds. It is calledcorrect iff we haveL �A��SN�mN�.�

The following lemma states that the reachability graph of a Petri netN can be considered as
a concurrent automaton ofN.

LEMMA 5.4. For some safe Petri net N, define A to be a concurrent automaton of N with
the components MA �RN�mN�, m1RA m2�df �t � TN �m1 � t� & m2 � m1�∆ t�, ΛA�m1�m2� �
ft � so�TN� : m1� t� & m2 � m1�∆ tg, and mA � mN. Then A is complete and correct.

The following lemma is obvious:

LEMMA 5.5 (Preservation of Dead States and Liveness).Let N be a Petri net and let A be
a correct and complete concurrent automaton of N.

1. m �RN�mN� is dead iff m �MA and jRA�m�j� 0.
2. A transition t is life in N iff for each terminal strongly connected component1 U of A it

holds: �hm1�m2i � RA� �U�U���a � ΛA�m1�m2��t � λa�Ea���

6. Algorithm

In this section we discuss a basic algorithm to generate a concurrent automatonA of a safe
Petri netN. Algorithm 1 resembles the basic reachability graph construction algorithm. It works
as follows: It starts by introducing the initial statemA � mN� of A into the setQ, which contains

1If G� hV�Ri is a directed graph with node setV and edge relationR�V �V , then astrongly connected component
U � V is maximal set of nodes such thatv �j w � v R� w & w R� v for all v�w � U . U is called terminal iff for
�w�V��v�U�v R� w��w�U�. A strongly connected component of a concurrent automatonA is a strongly connected
component of the graphhMA�RAi.

submitted toConcurrency Specification and Programming’98, Berlin, September 1998



8 PETER DEUSSEN

algorithm generate is
input N, a Petri net;
output A, a concurrent automaton;

begin
(1) mA � mN� ; MA ��; RA ��; ΛA ��; Q�fmAg;
(2) while Q �j � do
(3) selectm �Q; Q� Q�fmg;
(4) foreach C � max steps�enabled�m�� do
(5) a� so�C�; m�� m�∆C; extend�a�m��;
(6) if m� �j MA then Q� Q�fm�g; MA �MA�fm�g fi;
(7) R� R�fhm�m�ig; ΛA�m�m��� ΛA�m�m���fag
(8) od
(9) od

end generate;

ALGORITHM 1. Concurrent automata generation—basic algorithm.

unprocessed states (the meaningN� will be explained later—for now, assumeN� � N). If a state
m is considered (lines 2–9), a set of semiorders enabled atm is generated and appropriate arcs
are added toA (lines 4–8). If a new statem� is encountered by the firing ofa atm, m� is added to
MA andQ (line 6). The algorithm terminates if all states inQ have been completely processed.

We have to consider the following problems:

1. If m is a state ofA already generated, how do we construct an appropriate set of
semiorders enabled atm?

2. If a is a semiorder under construction enabled at a statem, do we add another event toa
or do we stop extendinga and add an arc labelled witha to A?

To solve problem 1, let us discuss the following strategy: For a statem under consideration,
let T be the set of enabled transitions atm. Define theforward conflict relation Cf � TN �TN by

t1 Cf t2 �df F�1
N �t1��F�1

N �t2� �j � & t1 �j t2�

Now we generate the set of all maximal steps inT , i. e. the set of cliques2 in T according to the
relationt1 I t1 �df ��t1 Cf t2� & t1 �j t2. If C is such a clique, we construct a semiordera, which
contains an evente labelled witht for eacht �C and an empty ordering relation�a. Now, events
for each transitiont enabled atm�∆Ea are added repeatedly, until some termination criterion
holds (problem 2).

This strategy fails to yield a complete concurrent automaton forN. Consider the Petri net
N in figure 5 and the two concurrent automataA1 andA2: At the shown markingmN , we have
the maximal stepC � ft1� t3g. Using the strategy described above, the concurrent automatonA1
would be generated, which is incomplete in opposite toA2, which is complete.

We therefore propose another strategy: Instead of using the relationI to compute cliques
in the setT of enabled transitions at a statem, we compute cliques according to the relation
t1 IT t2 �df t1 I t2 & Cf�t1�� T & Cf�t2�� T .

Now let us discuss problem 2. At first, we supposeN to be extended by aninitialization part,
i. e. if N is a safe Petri net, we define a Petri netN� with the componentsPN� �df PN �fpIg (pI �j
PN), TN� �df TN�ftIg (tI �j TN), FN� �df FN�fhtI � pi : mN�p� � 1g�fhpI� tIig, mN��pI� �df 1 and

2For some setT , aclique according to a symmetric and irreflexive relationI � T �T is a maximal setC � T such
that t �j t� � t I t� for all t�t� �C.

submitted toConcurrency Specification and Programming’98, Berlin, September 1998



ALGORITHMIC ASPECTS OF CONCURRENT AUTOMATA 9

�

�

t1 t2

t3

A1:
mN

A2:
mN

ft1g
ft2g

ft3g

ft1 t3g

FIGURE 5. A Petri netN and two concurrent automata ofN.

mN��p� �df 0 for all p �j pI. Obviously, the extension ofN to N� does not change the behaviour
of the net significantly. We haveLN�mN� �LN��mN�, andmN � mN� �∆ tI.

Define for some Petri netN thebackward conflict relation Cb � TN �TN by

t1 Cb t2 �df FN�t1��FN�t2� �j � & t1 �j t2�

We prove the following property of semiwordsa �SN��m�:

THEOREM 6.1. Let N be a safe Petri net and let m � RN��mN�. Let a0�a1�a2 � � � be an
infinite sequence of semiorders such that a0 � ε and for all i� 0, ai �SN��m� and ai�1 � ai�N ti
for some ti � TN, i. e. we have ai � ak for i � k. Then there is some j � 0 such that a j fulfills the
following: for each e � Ea j there is either some e� � Ea j such that e �a j e� and Cb�λa j �e

��� �j �

or �ak�h
k
j�e�� �� for each k� j, where hk

j : Ea j � Eak is an injective homomorphism.

PROOF. Choose somean (n � 0) as follows: Ife � max�an
�Ean�, then eitherj��1

an
�e�j �

jTN� j or �ak�h
k
n�e�� � � for eachk � n. �ak�h

k
n�e�� � � for eachk � n and for all e �

max�an
�Ean� is impossible since we would havean � ak, which contradictsan � ak for n � k.

Hence suppose somee � max�an
�Ean� such thatj��1

an
�e�j � jTN� j and�ak�h

k
n�e�� �j �. Then

there must be an evente� � Ean , e� �j e, such thatλan�e
�� � λan�e�, sayλan�e� � t. Sincean is

a semiorder ande � max�an
Ean , we must havee� �an e. Let D �df fê � Ean : e� �an ê �an eg

and defineQ �df
S

ê�D A�ê�. It is easy to check thatQ �� implies thatN� and alsoN are either
disconnected or non-safe.tI � λan�D� is impossible, sincet � tI means thattI fires twice inan,
andtI � λan�ê� for some ˆe �D different frome ande� means that ˆe has some predecessor ˆe� such
that pI � A�ê��. This impliespI �j Q.

SupposejF�1
N� �p�j� 1 for eachp � Q, i. e.Cb�λan�ê�� �� for each ˆe � E. ThenF�1

N� �Q� �

E � FN��Q�, i. e. Q is a deadlock in the sense of Petri net theory.3 But because ofpI �j Q, we
have∑p�Q m�p� � 0, i. ean would not be enabled atm. We concludeCb�λan�ê�� �j � for some
ê � E.

Now we are ready to determine the semiordera j. Let

H �df max
�an

fe � Ean : Cb�λan�e�� �j � � �k� n��ak�h
k
n�e�� ���g�

and definea � an
�
��1

an
�H�

�
. Thena has the required properties. It remains to show thata� a j

for some j � 0. But clearly,a � t0�N t1�N 
 
 
 �n t j for some j � 0 because of theorem 4.3,
which impliesa� a j. �

Now we have solved problem 2. Ifa is a semiorder under consideration enabled at a state
m of the concurrent automaton which we want to construct, a new evente labelled with some
transitiont is only added if the following conditions hold:

3A deadlock of a Petri netN is a non-empty setQ � PN of places such thatF�1
N �Q� � FN�Q�. For deadlocks the

following holds: if m�m� �RN�mN� such thatm a
���� m� for some semiordera, then∑p�Q m�p�� ∑p�Q m��p�.

submitted toConcurrency Specification and Programming’98, Berlin, September 1998



10 PETER DEUSSEN

procedure extend�a : in out so�TN��;m : in outP�PN�� f0�1g� is
begin

(1) T � addable�a�m�;
(2) while T �j � do
(3) selectt � T ; T � T �ftg; a� a�N� t; m� m�∆ t;
(4) T � addable�a�m�
(5) od

end extend;

ALGORITHM 2. Concurrent automata generation—procedureextend.

T1. m�∆Ea � t�;
T2. Cf�t� ��;
T3. if for somee � Ea�N�t we haveCb�λa�N� t�e�� �j �, thene �max�a�N� t �Ea�N� t�.

Theorem 6.1 makes sure that this procedure finally terminates.
Algorithm 1 makes use of the following subroutines:

1. enabled�m� returns the set of enabled transitions at a markingm of N.
2. max steps�T � returns for a transition setT the set of all cliques inT according toIT .
3. so�C� returns a semiordera with empty ordering for the transition setC, i. e. if C �
ft1� t2� � � � � tng, thena � hf1�2� � � � �ng���fhi� tii : 1� i� ngi

4. extend�a�m� is shown in fig 2. It extends a semiordera computed byso�C� as large as
possible and simultaniously updates the markingm to m�∆Ea.

5. addable�a�m� returns a setT of transitions such conditions T1, T2, and T3 are satisfied
for eacht � T .

THEOREM 6.2. For each safe Petri net N, algorithm 1 terminates.

PROOF. The termination of algorithm 2 follows from theorem 6.1. But clearly, a safe Petri
net has only finitely many reachable markings, namelyjRN�mN�j� 2jPN j. �

THEOREM 6.3. Let A be a concurrent automaton of a safe Petri net N generated by algo-
rithm 1. Then A is correct.

PROOF. For each pairhm�m�i �RA and for alla�ΛA�m�m�� we havem
a

��	m� by corollary
4.6. Now the theorem follows by a simple induction on the lengthn of a pathα � mAm1 � � �mn

throughA. �

THEOREM 6.4. Let A be a concurrent automaton of a safe Petri net N generated by algo-
rithm 1. Then A is complete.

PROOF. AssumeSN��mN���L �A� �j �. Leta�min��SN��mN���L �A��. Choose some
b � max����1�a��L �A��. Then neithera � ε nor b � ε, sincetI � c for eachc � L �A��
SN��mN��. Because ofb�L �A�, there is a pathα � mAm1m2 � � �mn throughA such that there is
somec �L �α � with c� b. Putα to be of maximal length such thatc �max����1�b��L �A��.

Now letb � c�N� d. anda � c�N� d�. d � ε � d� is impossible since this would implya � b
in contradiction toa �j L �A�. Supposed � ε andd� �j ε. LetC � λd��min�d�

�Ed���. ThenC is an
enabled step atmn, and therefore there is a stepC� � TN� generated by the proceduremax steps
with C��C �j �. This implies�c�N� so�C��� �L �A�, and also�c�N� so�C��C�� �L �A� Then
b� �c�N� so�C��C��� a, which contradictsb �max����1�a��L �A��.

submitted toConcurrency Specification and Programming’98, Berlin, September 1998



ALGORITHMIC ASPECTS OF CONCURRENT AUTOMATA 11

Henced �j ε andd� �j ε. We haved � d�. Let m � mn �∆Ed . Note thatm cannot be in
MA, since otherwise the maximality of the pathα would be contradicted. Put̃d such thata �
c�N� d�N� d̃. d̃ � ε is impossible since this would implya � b.

Let F � ff � sw�TN�� : f �j ε & b�N� f �L �A�g be the set of continuations ofb inL �A�.
Note that eachf � F is enabled atm. F �j �, since otherwisem would be a dead state. Therefore,
m � MA by lemma 5.5, which contradicts the maximality ofα . a � min��SN��mN���L �A��
implies λa�min�a�Ea��� λ f �min� f �E f �� � � for all f � F . Let t � λd̃�min�d̃

�Ed̃��. Assume
Cf�t� � �. If Cb�t� � � or Cb�t� �j � such that condition T3 is satisfied for�d�N� t�, thent
could be added tod by line 3 of algorithm 2. Then�b�N� t� �SA�mA� in contradiction tob �
max����1�a��L �A��. On the other hand, ifCb�t� �j � and condition T3 is not satisfied, then
d wound be extended by algorithm 2 to some semiorderd �, and a new archmn�m�i with m� �
mn �∆Ed� will be added toA such thatd� � ΛA�mn�m��. Since algorithm 2 adds only transitions
with empty forward conflict relation tod�, we have thatm � t� implies m� � t�. Then, a step
C containingt would be constructed atm� in line 4 of algorithm 1, i. e�d�N� t� � �d��N� t� �
SN��mN��. This implies�b�N� t� �SN��mN��, a contradiction tob �max����1�a��L �A��.

We concludeCf�t� �j �. Repeating the argument above,d will be extended tod� by algo-
rithm 2, and an archmn�m�i such thatm� � mn �∆Ed� andd� � ΛA�mn�m�� will be introduced.
Since algorithm 2 adds only transitions with empty forward conflict relation tod�, we have that
m � t� implies m� � t�. Then, a stepC containingt would be constructed atm� in line 4 of
algorithm 1, i. e�d�N� t�� �d��N� t� �SN��mN��. This implies�b�N� t� �SN��mN��. Again,
b �max����1�a��L �A�� would be contradicted. This concludes the proof. �

A conflict cluster of a Petri netN is a maximal setD � TN such thatt �j t � 	 t Cf t for all
t� t � � D holds. LetCN be denote the set of conflict clusters ofN.

THEOREM 6.5. The time effort of the computation of a concurrent automaton A for a Petri
net N by algorithm 1 is O

�
2jPN� j�

�
2k � jTNj

		
, where k � maxfjDj : D � CN�g.

PROOF. The first factor, 2jPN� j, is simply the maximal number of reachable states ofN�.
2k � jTN� j is obtained as follows: For each reachable markingm of N�, the proceduremax steps
computes at mostc�2k steps for some constantc � 0. (examples where equality holds can be
easily constructed). For each of this steps, at mostjTN� j events are added by algorithm 2, hence
the time effort to process a state completely isO�2k � jTNj�. �

7. Summary and Further Works

We have introduced the formalism of a concurrent automaton for a safe Petri net. The use of
concurrent automata instead of reachability graphs has the benefit that concurrency of transition
does not necessarily lead to the state explosion problem. Moreover, since global states (markings)
are maintained, it is possible to rejoin branching behaviours ofN. In some cases, this will yield
a smaller representation of the behaviour ofN than the prefix.

A basic algorithm for the generation of a concurrent automaton has been presented. It has
been shown, that the concurrent automaton constructed by this algorithm is correct and complete
w. r. t. semi language equivalence in the sense of section 5.

However, it is unlikely that this basic algorithm has acceptable run-times for other then small
Petri net examples. An inspection of some medium-sized Petri nets [7, 8] leads to the observation,
that almost every transitiont in these examples is involved in a forward conflict (Cf�t� �j �) or
a backward conflict (Cb�t� �j �), i. e. algorithm 1 will be in practice not significantly faster then
usual reachability graph generation.

submitted toConcurrency Specification and Programming’98, Berlin, September 1998



12 PETER DEUSSEN

Concentrating on forward conflicts, we may improve algorithm 1 in the following way:
Instead of using the relationIT to construct steps by the proceduremax steps, we may use the
relationJT defined byt1 JT t2 �df t1 IT t2 & �m � RN�mN��m � t1 & m � t2�� In practice,JT

cannot be determined without an exhaustive net analysis such as reachability graph generation
or prefix generation. However, any relationI � such thatJT � I� � IT will also do the job.

Then the problem can be restated as follows: Lett1 andt2 be transitions of a Petri netN such
that t1 Cf t2 holds. If for every markingm �RN�mN� there is some placep such thatm�p� � 0
and�t�1 � t�2 ��p�� 0, then putt1 I� t2, i. e. we have to compute whether a markingm with m� t�1
andm� t�2 is unreachable inN.

There are several methods of classical Petri net theory to prove the unreachability of a mark-
ing m, for instance net analysis be means of place invariants, the state equation (see [10] for
details), or by traps or deadlocks.

Another question is which net properties can be determined using concurrent automata.
Lemma 5.5 states that the existence or absence of dead states can be proved by inspection of
a concurrent automaton very easily. The same applies to liveness of transitions. Techniques for
more sophisticated analysis goals are in preparation. Especially, it seems to be likely that it is
possible to determine so-calledpartial order properties by means of concurrent automata, i. e
those properties related to the concurrency of transitions.

References

1. E. Best and C. Fern´andez,Nonsequential processes, EATCS, vol. 13, Springer, 1988.
2. P. Deussen,Concurrent automata, Tech. Report 1-05/1998, Brandenburg Techn. Univ. Cottbus, 1998, to appear.
3. J. Engelfriet,Branching processes of Petri nets, Acta Inf. 25 (1991), pp. 575–591.
4. J. Esparza,Model checking using net unfoldings, Science of Computer Programming23 (1994), pp. 151–195.
5. J. Esparza, S. R¨omer, and W. Vogler,An improvement of McMillan’s unfolding algorithm, Tech. Report SFB-Report

342/12/95 A, Techn. Univ. of M¨unchen, 1995.
6. J. Grabowski,On partial languages, Fund. Inform4 (1981), no. 2, pp. 427–498.
7. M. Heiner,Verifaction and optimization of control programs by Petri nets without state explosion, Proc. 2nd Int.

Workshop on Manufacturing and Petri Nets held at Int. Conf. on Application and Theory of Petri Nets (ICATPN
’97) (1997), pp. 69–84.

8. M. Heiner, P. Deussen, and S. Spranger,A case study in design and verification of manufacturing system control
software with hierarchical Petri nets, The Int. Journal of Advanced Manufacturing Technology, special issue on
Petri Net Applications in Advanced Manufacturing (1998), to appear.

9. K. L. McMillan, Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits,
Proc. of the 4th Workshop on Computer Aided Verification (Montreal), 1992, pp. 164–174.

10. S. Melzer and J. Esparza,Verification of system properties via integer programming, Programming Languages and
Systems—ESOP’96 (H.R. Nielson, ed.), LNCS, vol. 1058, Springer-Verlag, 1996, pp. 250–264.

11. M. Nielsen, G. Plotkin, and G. Winskel,Petri nets, event structures and domains, Part I, Theoretical Computer
Science13 (1981), pp. 85–108.

12. P. H. Starke,Processes in Petri nets, J. Inf. Process. Cybern. EIK17 (1981), no. 8/9, pp. 389–416.
13. , Graph grammars for Petri net processes, J. Inf. Process. Cybern. EIK19 (1983), no. 4/5, pp. 199–233.
14. , Analyse von Petri-Netz-Modellen, G. B. Teubner, Stuttgart, 1990.
15. A. Ulrich, A description model to support test suite derivation for concurrent systems, Tech. Report I-06/1996,

Brandenburg Techn. Univ. Cottbus, 1996.
16. , A description model to support test suite derivation for concurrent systems, Kommunikation in verteilten

Systemen, GI/ITG-Fachtagung (KiVS’97), Springer-Verlag, 1997, pp. 151–166.
17. W. Vogler,Modular construction and partial order semantics of Petri nets, LNCS, vol. 625, Springer-Verlag, 1992.

submitted toConcurrency Specification and Programming’98, Berlin, September 1998


