Algorithmic Aspects of Concurrent Automata

Peter Deussen

Brandenburg Technical University Cottbus
Computer Science Institute
—Data Structures and Software Dependability—
email: pd@informatik.tu-cottbus.de
tel: (+49-355) 69 3826, fax: (+49-355) 69 3820
Postbox 10 1344, 03013 Cottbus, Germany

ABSTRACT. Partial order semantics of Petri nets have a long history. In this paper, we describe

a formalism which combines partial order semantics with the usual notion of markings of a Petri
net. We call this formalismoncurrent automata. We present a generation algorithm for concurrent
automata. We show that our algorithm is correct in the sense of semi language equivalence: The
generated automaton recognizes essentially the same set of semiwords as the associated Petri net.

Key words. Concurrent automata, Petri Nets, Partial Order Semantics, Semiwords, Semi
Languages.

1. Introduction

Partial order semantics of formalisms designed to describe concurrent systems have a long
history. Concentrating on Petri nets, instances of those semantics are protg$pesie) event
structures 11], partial words] and semiwordsJ2, 17], or branching processeS3][Especially
a finite representation of a branching process of a 1-bounded Petri net, calfeutéya efix of
the maximal branching process of a Petri net (prefix, for short) has turned out as extraordinary
useful for analysis goals (se®, ¢] for available analysis techniques).

In this paper, we describe another formalism which combines partial order semantics with
the usual notion of markings of a Petri net. We call this formaleamcurrent automata. Con-
current automata have the benefit that concurrency of transitions does not necessarily lead to the
state explosion problem. Moreover, since global states (markings) are maintained, it is possible
to rejoin branching behaviour in opposite to branching processes.

Concurrent automata were originally introduced by Ulrith, [L6]. Ulrich uses the terrhe-
haviour machine. We prefer the term concurrent automaton because it seems to meet the crucial
point somewhat better. Ir1p], an algorithm for the construction of a behaviour machine is pre-
sented. This algorithm uses the prefix of a safe Petri net as input. As notk],ithp algorithm
does not work correctly if the Petri net under consideration contains dead markings. Another
disadvantage is that the input prefix has to have certain structural properties, namely that each
cut-off event and at least one of its associated events have to be in thelseaheonfiguration

2 PETER DEUSSEN

(see p] for the meaning of the termsut-off event andlocal configuration—a detailed expla-
nation is far beyond the scope of this paper). This implies that only the most inefficient cut-off
criterion for the generation of the prefix can be applied (5 [

In this paper, we present another generation algorithm which does not depend on the prefix
of a Petri net. We show that our algorithm is correct in the sense of semi language equivalence:
The generated automaton recognizes an essential subset of the set of semiwords generated by the
associated Petri net. Our algorithm is however restricted to safe Petri nets.

This paper is organized as follows: Section 2 describes the basic notations used in the follow-
ing, especially semiwords are introduced. In section 3, Petri nets are introduced and semiwords
are used to define partial order semantics for Petri nets. In dealing with Petri nets, we adopt
mostly the notations given infl]. Section 4 addresses the existence and uniqueness of least
sequential semiwords, i. e. those semiwords which express the causal relation of the transitions
of a Petri nets mostly adequate. In section 5, concurrent automata are introduced. The semi lan-
guage of a concurrent automaton (w. r. t some Petri net) is defined. Definitions for the correctness
and completeness of a concurrent automaton are given. In Section 6, a construction algorithm
is described. It is shown that this algorithm is complete and correct in the sense of the previous
section 5. Finally, section 7 addresses open problems and further works.

An extended version of this paper will be publishedZs\Jvhere also proofs omitted here
can be found.

2. Semiwords

To avoid tedious notions, we fix the following convention: If a structBee (A,B,...) is
introduced, the components 8vill always be denoted bjg,Bsg,

We use the following notation$¥ andZ denote the sets of non-negative integers and in-
tegers, respectively. For some #etZ?(A) denotes the set of all subsetsAfForRC Ax B
anda € A, we denote thémage of a underb by R(a) =4 {b € B: a Rb}. This notation is
extended to subse C A by R(C) =g UaecR(@). R™1 C B x A denotes thenverse of R,

i.e, bR Tasy aRb. For each sef, ida C A x A denotes thedentity relation on A, i. e.
aida b &4 a=b. R C Ax A denotes the least transitive relation contain®@ A x A. Let

R C A x A be a binary relation o\ andB C A. B is calledpre-closed with respect toR iff

B = R1(B). A preorder on a setA is a irreflexive and transitive relation C Ax A. A par-

tial order on A is an asymmetric preordering @ If < (<) denotes a preordering &% then

< =g¢f <Uida (X =¢f <Uida). Throughout this paper, we do not distinguish between mappings
f : A— Band their graph$(a,b) e AxB: b= f(a)}.

Let T be an alphabet. Afinite) labelled partial order (Ipo) overT is a tuplea= (E, <,A),
whereE is a finite set ofevents, < C E x E is a partial order, and : E — T is a labelling
function.

Letabe alpo over an alphab&t We use the following notations:

1. The relatiorcoy C Ea x E; is defined bye; coa € <4 (€1 <a€2) & —(e2 <a€1). Aset
C C E is called aco-set iff we havee; co, e for all e1, e, € C such thate; + e.

2. Ift e T, the Ipo({0},2,{(0,t)}) is called aletter. If no confusion can occur, we use
both to denote an element dfand its letter.

3. Theempty lpois € =¢4; (@, 2, D).

4. A semiorder is a Ipoa where for alle;,e; € Ej, €1 Coa € = Aa(e1) F Aa(e2). so(T)
denotes the class of semiorders over

DEFINITION 2.1 (Prefix and Sequentialization). Laeandb be Ipo’s.

submitted toConcurrency Specification and Programming’ 98, Berlin, September 1998

ALGORITHMIC ASPECTS OF CONCURRENT AUTOMATA 3

/t4 .
\ts

/t4\
\ts/

a: h—th—ty ,b: t3 tg ,C: tza—ty—tg—tg ,d: t3

FIGURE 1. Some semiorders ovér={tj: 1<i < 7}.

1. Amappingh: E, — Ej is called gpre-homomor phismiff e; < & impliesh(e;) <a h(ey)
for all e, e € Ey, and furthermore), = Ay o h. Itis called ahomomorphismiff it is a pre-
homomorphism with the propert;(ggl(e)) = <31 (h(e)).

2. b is called aprefix of a, denoted byb < a, iff there is an injective homomorphisi:
E, — Ea We writeb = a, if b < aanda < b holds.

3. a is called asequentialization of b, denoted byb < a, iff there is a bijective pre-
homomorphisnn : E, — E,.

4. If D C E,, then we denote bya|D] the Ipo generated by D in a aD] =g
(D,<anN (D x D),AaN (D x T)). Clearly, if D = <;*(D), thena]D] < a. The required
homomorphismus is justlp. O

The notions introduced above are illustrated by the examples in figure 1. Event names are
omitted, only their labels are shown. The order relation is figured by arrows. Transitive arcs are
omitted. We havé < candd < b.

DEFINITION 2.2 (Partial words and Semiwords). pertial word is an equivalence class
(w.r.t.=) of Ipo’s. A semiword is an equivalence class of semiorders. We Valite [Ea, <a, A4
to denote the equivalence class of a §d’he same notion applies to semiwordssani lan-
guageis a set of semiwordsw(T) denotes the class of semiwords oVer O

We fix the following conventions: i, b, c, ... are Ipo’s or semiorders, then we use boldfaced
lowercase letters, b, c, ..., to denote its equivalence clas$, [b],[c],.... Hence, for instance,
E, will always refer to the event set of a representant of the partial werdl]. The equivalence
class ofe will also be denoted by. Especially, ift is a letter, we uséto denote the semiword
[t] = {0}, 2, {(0,1)}].

It is easy to prove the following lemma:

LEMMA 2.3. Both < and < are preorderings on the class of Ipo’s. = is an equivalence
relation.a=biffagxbandb=xa Ifweputa<b&sgag<bandagbsega<bforalaca,
b € b, then < and < arereflexive partial orderings on partial words and semiwords, respectively.

3. Partial Order Semantics of Petri Nets

A net (P T,F) consists of non-empty, finite sesandT such thatPNT = &, where the
elements oP andT are calledplaces andtransitions, respectively, and low relation F C (P x
T)U(T x P). We assume a net to be connected,PeT = (FUF ~1)*(x) for eachx € PUT. A
state or marking of a net(P, T,F) is a mappingn: P — N. If (P T,F) is a net andnis a marking
of N, we call the tupleN = (P, T,F, m) aPetri net. mis called thanitial marking of N.

Figure 2 gives an example of a Petri net. Places are figured as circles, transitions as rect-
angles, and the flow relation is indicated by arcs. Black dots (tokens) are used to indicate a
markingm of the net. In this examplen(p;) = 1, andm(p) = 0 for all places different fronp;.

The mapping$:)~, ()t : Tn — (Py — N), andA : Ty — (Py — Z) are defined to be

_ 1, if pkt, 1, iftky
(P =ar { 0, otﬁerwise, (P =ar { 0, otherW[i)se,
and At =4 tT—t~ (componentwisg

submitted toConcurrency Specification and Programming’ 98, Berlin, September 1998

4 PETER DEUSSEN

FIGURE 2. A Petri netN

Let a be a semiorder over the transition §gtof a Petri netN. For eache € E; we define
€ =gi Aa(€)”, €7 =g Aa(€)T, andAe =gy AAa(€). ForD C E; we defineD™ =g SecpAale) ™,
D =gt SecpAa(€) T, andAD =y Y ecp AXa(€), wherey is understood component wise.

A Ipo a is calledenabled at a markingm of N iff for all co-setC of a we have:.C™ <
m+A(<;1(C)). We writem =2, if ais enabled am. Thesuccessor marking nt of mandais

m = m-+ AEa. In this case, we writen==> m'. By
A(m) = {ae sw(Ty) : m:a>}
we denote theemi language of a Petri nelN and a markingn of N. The set
Zn(m) = {m{ e (Py— N :Jae A (m) (m:a> nf)}

denotes the set of markings reachable from a mankiongN. A Petri netN is calledk-bounded
iff there is somek > 0 such tham(p) < kfor all me Zn(my) andp € Py. Itis calledsafe if it
is 1-bounded. A markingh € Zn(my) is calleddead iff m} t~ for all t € Ty. A transitiont is
called life inN iff for all me Zn(my) there is somen’ € Zn(m) suchtham>1t-.

The semiorders shown in figure 1 are all enabled at the initial marking of the Petri net in
figure 2.

THEOREM3.1 (Starke 13]). If m =2, then m == for each a < b, i.e. Zy(m) is pre-

closed W.r.t. <. If m=2> 1/, then m =2 m for eacha< b, i.e. % (m) is pre-closed w.. 1.
S

4. Least Sequential Semi Languages

We now address the following problem:_#y (my) is the semi language of a Petri iétis
it possible to find another semi languageC .#\(my) such thatg () = “n(my)? Is there a
uniquely defined minimal semi languagéwith this property? These questions will be answered
positively in the following; thideast sequential semi language will be denoted by (my).

submitted toConcurrency Specification and Programming’ 98, Berlin, September 1998

ALGORITHMIC ASPECTS OF CONCURRENT AUTOMATA 5

Another problem we have to solve is: Given two least sequential semivacadg b such

thatm =2 m =2 holds for reachable markings m' of a Petri neN, can we find an operation

® on semiwords such that® b is again the least sequential semiword with®2, »

Let N be a safe Petri net and late % (my). DefineA(e) =4t Fn(Aa(€)) U Fy t(Aa(e)) for
eache€ E,.

LEMMA 4.1. Let N be a safe Petri net and let a € %\ (my). Thenfor all e, € € E, we have
A)NAE) Fo=>ea€ VE L e

PROOF (Sketch). Assume, € € E, such thatA(e) NA(€) + @ andeco, €, i.e.C={e €}
is a co-set. IF 1(Aa(€)) NFy1(Xa(€)) + @, we would havemy +A<;1(C))(p) > 1 for each
P € Fy1(Aa(€) NFy(Aa(€)), If Fn(Aa(8)) NFu(Aa(€) £ @, then (my + A<z 1 (C))(p) > 1
for eachp € Fn(Aa(e)) N Fn(Aa(€)). Finally, Fy(Aa(e)) N Fyt(Aa(€)) + @ implies (my +
A<3Y({e}))(p) > 1 for eachp € Fn(Aa(€)) NFy 1(Aa(€)). In any case, the safety bfwould be
contradicted. O

LEMMA 4.2. If ais a semiword over the transition set Ty of a safe Petri net N and m e
2y (my) isareachablemarking of N, then m =2 iff for eachec E, wehavem+ A<, (e) > e .

PROOF. (=) Assumem ==. Let C be a co-set of. Thenm+ A<;1(C) > C~, which
impliesm+ A<31(C) > e~ for eache € C. By lemma 4.1 we havé(e) NA(C — <3(e)) =
@, which implies(m+A<3;1(C — <3%(€)))(p) = m(p) for eachp € A(e). We concludgm+
A<7HC))(p) = (m+A<7(e))(p). Thenm+ A<;1(e) > e~ by assumption.

(«) Assumem+A<;(e) > e for eache € E,. LetC be a co-set 0. First, we may note
thatC~(p) < 1 for eachp € Py, becaus€~(p) > 1 would imply that there are evergg, e; € C,
e1 + &, such thatp € Fy 1 (Aa(e1)) NFy t(Aa(e2)), which impliesA(e;) NA(e;) + @. But then
e1 <a € Orey <, € by lemma 4.1, ang€ would not be a co-set. Supposa+A<;1(C)) » C-,
i. e., there is some plagec Py such thatm+A<;1(C))(p) <C~(p),i.e.(m+A<z1(C))(p) <
0 andC~(p) = 1. By assumption we haven+A<z*(e))(p) > 1, i. e there must be at least some
evente € <31(C—<z%(e)) such thap € Fy 1(Aa(€)). But this is impossible because of lemma
4.1. We concluden+A<z1(C) > C-. O

Lemma 4.2 provides an inductive proof method for enabledness proofs. To prove that a
semiorderis enabled at a marking of a safe Petri né\l, it has to be shown that for eaelE E,
the implicationVe' € Ex(€ <ae& m+A<;1(€) > €)= m+A<;l(e) > e is true. As an
application of the principle of Noetherian Induction, it is allowed to conclude< ;1(e) > e~
for eache € E,, hence, by lemma 4.2p =2,

The following theorem states that if we consider safe Petri Nefsr each member of the
semi language o it exists a uniquely defined least sequential semiword. This is not true for
non-safe nets, as the example in figure 3 shows: The semiwsra sequentialization of botn
andb, but neithema < b norb < a holds.

The theorem resembles (the second part of) theorem 2.2 ¥jn\fogler uses grocess
semantics for Petri nets, which is not considered in this paper. We give a direct proof.

THEOREM4.3. Let N be a safe Petri net and let a € %y (my). Then the set <~ 1(a) N
Zn(my) contains a uniquely defined least element with respect to <, namely the semiword
al =¢ [Ea,R",Aa], whereeR€ &g e <a € & A(€)NA(E) + 2.

PROOF Clearly, the operatioft)* is well-defined. We have to prove the following proper-
ties ofa':

submitted toConcurrency Specification and Programming’ 98, Berlin, September 1998

6 PETER DEUSSEN

t—t3 t 5t
a: ,b: ,C: \t3 .
t th—t3 t2/
FIGURE 3. A Petri netN and some of its semiworda.< ¢ andb < ¢, but
neitherag bnorb< a.

(1) <, is a partial order. This follows from the fact that is a partial order.

(2) at n(my). Because of lemma 4.2 it is enough to show that foreadl E,, if
[af[< (@) € Zu(my), then[a[< (@)]] € Zu(mn). Lete e Ea and assuméa'[<_}(e)]] €
n(my). We have

{deA:d< e&AeNAE)+o} = {cA:ed<e& AleNAF) + o}

by lemma 4.1, which implies+ A<_'(e) = m+ A<z '(e). Thenm+A<,*(e) > e implies
m+A< e >e .

(3) at is least sequential. Clearty < a. Suppose somiee <~ (a) N.Zy(my). Then there
are bijective pre-homomorphists E, — Eq andg: E,, — Ea. Letf :E,, — E,=h"1og. We
want to show thaf is a bijective pre-homomorphism, i. @} < b. Bijectivity follows from the
bijectivity of handg. ObviouslyA, = A o f.

Sincef, g, andh are bijective, we must hage= ho f. Lete;, & € E;) and assume; <, &.
ThenA(er) NA(e) + @. e <, & impliesg(er) <a g(ez). On the other hand\(e;) = A(f(ey))
andA(ey) = A(f(ep)), which impliesf(e;) <, f(e2) or f(e) <y, f(e1) by lemma 4.1f(e;) <
f(e) is impossible because this would imgye;) = h(f(e2)) <a h(f(e1)) = g(e1). We con-
cludef(ey) <p f(e2). O

DEFINITION 4.4. LetN be a safe Petri net and lete %y (my). We put
IN(M) =gt {a¢ esw(Ty):ae .,%N(m)} .

Furthermore, we define an operatioR : so(Ty) x so(Tyn) — so(Tn) on semiorders oveRy by
a@nb =g (EaUEp, (<aU<pUR)™,AaUp), whereEaNEp = @ is assumedR C Eq x Ey is
defined bye R€' <4t A(e) NA(€) & @. For semiwords, b, we puta©nb =g [a®n b]. O

Clearly,®n (on semiwords) is a well-defined operation.
COROLLARY 4.5. If N isa safe Petri net and m € Zn(my), then < (n(m)) = Zu(m).

COROLLARY 4.6. Let N be a safe Petri net and let a € (M), b € (M) be semiwords
such that m=2= nf == for markingsm, i € %x(my). Thenacn b € A (m).

PROOF We haveaonb = (aGy b)i due to theorem 4.3.]

submitted toConcurrency Specification and Programming’ 98, Berlin, September 1998

ALGORITHMIC ASPECTS OF CONCURRENT AUTOMATA 7

{a,b} ty
A my ()?(D m a: t3<t5>t5 b ti—tr ,c: {ty}.
Cc

FIGURE 4. A concurrent automatohto the netin figure 2.

5. Concurrent Automata

DEFINITION 5.1 (Concurrent Automaton). Aoncurrent automaton over an alphabel is
a tupleA= (M,R,A,m) comprising a finite seM of states, atransition relation RC M x M, an
arc labelling function A : R— £(so(T)), and aninitial state me M. A concurrent automaton
of a Petri neN is a concurrent automaton ovEy such thaM C Zn(my) andm= my holds.O

Figure 4 shows a concurrent automaton of the Petri net in figure 2. The mankghgiven
by m(p7) = 1 andm(p) = O for all places different fronp;.

DEFINITION 5.2 (Semi Language of a Concurrent Automaton). l&tbe a concurrent
automaton of a Petri né. A path throughA is a finite sequence of states= mamym ... my
(n>0) such thatma Ra my, My Ramy, ..., my_1 Ra my. LetP(A) denote the set of pathes through
A

If a is a path through as given above, thet¥a(a) is defined by

a€ sala) ©d A=A ONBRON - ONan
& g € Aa(Ma,My) & 8 € Aa(My,MMp) & -+- & 8 € Aa(Mh—1,Mn)
Thesemi language of Ais the setZ(A) =gt Uaep(a) £ (a)- O

DEeFINITION 5.3 (Correctness and Completeness). A concurrentautomaton of a PBlri net
is calledcompleteiff £ (A) D .n(my) holds. Itis callectorrect iff we have Z (A) C .n(my). O

The following lemma states that the reachability graph of a PetiNreztn be considered as
a concurrent automaton bf.

LEMMA 5.4. For some safe Petri net N, define A to be a concurrent automaton of N with
the componentsMa = Zn (M), M RamMp g 3t € Ty (Mg >t~ & mp = my + At), Aa(mg,mp) =
{t e so(Ty) : M >t~ & mp = my + At}, and my = my. Then Ais complete and correct.

The following lemma is obvious:

LEmMMA 5.5 (Preservation of Dead States and Livenets).N be a Petri net and let A be
a correct and compl ete concurrent automaton of N.
1. me Zn(my) isdead iff me Ma and |Ra(m)| = 0.
2. Atransitiont islifein N iff for each terminal strongly connected component® U of A it
holds: 3(my,mp) € RaN (U x U) (Fa € Aa(my,mp) (t € Aa(Ea)))

6. Algorithm

In this section we discuss a basic algorithm to generate a concurrent autohftarsafe
Petri netN. Algorithm 1 resembles the basic reachability graph construction algorithm. It works
as follows: It starts by introducing the initial statg = my+ of Ainto the setQ, which contains

Lif G= (V,R) is a directed graph with node $étand edge relatioRC V x V, then astrongly connected component
U CV is maximal set of nodes such that- w = vR" w& wR" v for all vyw € U. U is calledterminal iff for
YweV(3Ive U(VR™ w) = we U). A strongly connected component of a concurrent automatohis a strongly connected
component of the grapfMa, Ra).

submitted toConcurrency Specification and Programming’ 98, Berlin, September 1998

8 PETER DEUSSEN

algorithm generateis
input N, a Petri net;
output A, a concurrent automaton;
begin
Q) Ma < My+; Mp <~ &5 Ra <+ & Ap < &5 Q+ {ma};
(2) whileQ#odo

3) selecime Q; Q+ Q—{m};
4) foreach C € max_steps(enabled(m)) do
(5) a <« so(C); m <+ m+ AC; extend(a,n);
(6) if M & Ma then Q<+ QU{n'}; Ma < MaU {m'} fi;
(7 R+ RU{(m,m}}; Aa(m,m) < Aa(mm) U {a}
(8) od
(9) od
end generate;

ALGORITHM 1. Concurrent automata generation—basic algorithm.

unprocessed states (the meariiigwill be explained later—for now, assum& = N). If a state

m is considered (lines 2-9), a set of semiorders enabledistgenerated and appropriate arcs

are added td\ (lines 4-8). If a new stata is encountered by the firing afatm, nY is added to

Ma andQ (line 6). The algorithm terminates if all states@Qrhave been completely processed.
We have to consider the following problems:

1. If mis a state ofA already generated, how do we construct an appropriate set of
semiorders enabled at?

2. If ais a semiorder under construction enabled at a statio we add another event o
or do we stop extendingand add an arc labelled withto A?

To solve problem 1, let us discuss the following strategy: For a stateder consideration,
let T be the set of enabled transitionsatDefine theforward conflict relation C; C Ty x Ty by

LGt o Fyit)NFAyit) + o0&t +t.

Now we generate the set of all maximal stepini. e. the set of cliquésin T according to the
relationty | t; <4 —(t1 G t2) & t1 £ to. If Cis such a clique, we construct a semiordgwhich
contains an everlabelled witht for eacht € C and an empty ordering relaticn,. Now, events
for each transitiot enabled am-+ AE, are added repeatedly, until some termination criterion
holds (problem 2).

This strategy fails to yield a complete concurrent automatoNfo€onsider the Petri net
N in figure 5 and the two concurrent automataandA,: At the shown markingny, we have
the maximal stel® = {t,t3}. Using the strategy described above, the concurrent automaton
would be generated, which is incomplete in oppositdtpwhich is complete.

We therefore propose another strategy: Instead of using the relatdoompute cliques
in the setT of enabled transitions at a state we compute cliques according to the relation
it gt 2 & CG(t) CT & CGi(t2) CT.

Now let us discuss problem 2. At first, we suppbdkt be extended by anitialization part,
i.e.if N is a safe Petri net, we define a Petri Netwith the componen®By« =4t PnU{pi } (pi ¢

Ph), Tne =af TnU{t } (6 € Tn), P =ar iU {(t, p) - m(p) = 13 U{(pi,ti) }, M= (pr) =qr 1 and

2For some seT, aclique according to a symmetric and irreflexive relatio T x T is a maximal se€ C T such
thatt =t' =t 1t forallt,t' e C.

submitted toConcurrency Specification and Programming’ 98, Berlin, September 1998

ALGORITHMIC ASPECTS OF CONCURRENT AUTOMATA 9

“ | i t)

6] to A

{ts}

FIGURE 5. A Petri netN and two concurrent automata df

my+(p) =¢f O for all p =+ p;. Obviously, the extension & to N* does not change the behaviour
of the net significantly. We havéqy(my) = A (M), andmy = my« + Aty
Define for some Petri néd the backward conflict relation Cy, C Ty x Ty by

Gty o Ant)NA) Fo& 4 F1
We prove the following property of semiwordse .+ (m):

THEOREM®G6.1. Let N be a safe Petri net and let m € Zn«(mMy). Let ag,a1,a... be an
infinite sequence of semiorders suchthat ag = e andfor all i > 0, & € .\« (m) and a1 =& Ont
for somet; € Ty, i.e. we havea < a for i < k. Thenthereissome j > 0 such that a; fulfills the
following: for each e € Eq, thereis either some € € Eq; such that e <4, € and Cy(Aq, (€)) + &

or <a (h¥(e)) = & for each k> j, where h : Ea; — Eq, isan injective homomorphism.

PROOF. Choose some, (n > 0) as follows: Ife € max.,, (Ea,), then eithef <z (e)| >
|Tn+| OF <a (hK(e)) = @ for eachk > n. <qa (hK(€)) = @ for eachk > n and for alle €
max, (Ea,) is impossible since we would haeg = a,, which contradicts, < a for n < k.
Hence suppose songc max., (Ea,) such thaj<;1(e)| > |Ty+| and <a (h(e)) + 2. Then
there must be an evert € E,,, € =+ e, such that\y,(€) = Aa,(€), sayAa,(€) =t. Sincea, is
a semiorder aneé € max., Ea,, we must haved <o, e. LetD =y {€ € Eq, : € <q, €<q, €}
and defineQ =4t Uscp A(€). It is easy to check tha = @ implies thatN* and alsaN are either
disconnected or non-safg.€ A5,(D) is impossible, since =t means that; fires twice inay,
andt; = A, (é) for somee’e D different frome ande’ means tha¢ has some predecesssiich
thatp, € A(¢). This impliesp, ¢ Q.

SupposéF1(p)| < 1 foreachp € Q, i.e.Cyp(Aq,(8)) = @ for eache’e E. ThenF:1(Q) =
E C Fy:(Q), i.e.Q is adeadlock in the sense of Petri net theotyBut because op; ¢ Q, we
havey ,com(p) = 0, i. ea, would not be enabled ah. We concludeC,(A,,(€)) + @ for some
écE.

Now we are ready to determine the semioragi_et

H =a max(ee Ea,:Co(ha,(8) + &V VK> n(<a (hi(e) = 2)},

and definea = ap, [g;nl(H)]. Thena has the required properties. It remains to show #ata;
for somej > 0. But clearly,a=ty Ont1 On --- ©ntj for somej > 0 because of theorem 4.3,
which impliesa = a;. O

Now we have solved problem 2. éfis a semiorder under consideration enabled at a state
m of the concurrent automaton which we want to construct, a new evaielled with some
transitiont is only added if the following conditions hold:

3A deadlock of a Petri netN is a non-empty se® C R, of places such thﬂ\jl(Q) C I (Q). For deadlocks the
following holds: ifm,n € 22y (my) such tham==2= n for some semiordea, theny ,eoM(P) = ¥ peo M (P).

submitted toConcurrency Specification and Programming’ 98, Berlin, September 1998

10 PETER DEUSSEN

procedure extend(a: in out so(Ty+);m:inout & (Py) — {0,1}) is
begin

(1) T <« addable(a, m);

(2) whileT +2do

(3) select € T; T < T — {t}; a< aon+t; M« m+At;
4) T + addable(a, m)
(5) od

end extend,

ALGORITHM 2. Concurrent automata generation—procea@ut@nd.

Tl m+AE; >t
T2. G(t) = 2;
T3. if for somee € Eqq .t We haveCy(Aae,.t(€)) + 9, thene € ma&a,N*t(Ea@N*t).

Theorem 6.1 makes sure that this procedure finally terminates.
Algorithm 1 makes use of the following subroutines:

1. enabled(m) returns the set of enabled transitions at a markiraf N.

2. max_steps(T) returns for a transition sét the set of all cliques i according tdr.

3. so(C) returns a semiordeat with empty ordering for the transition s€t i.e. if C =
{t17t27"- 7tn}! thena= ({1527 7n},®7{<i7ti> 11<i < n}>

4. extend(a, m) is shown in fig 2. It extends a semiordiecomputed byso(C) as large as
possible and simultaniously updates the marking m+ AE;.

5. addable(a, m) returns a seT of transitions such conditions T1, T2, and T3 are satisfied
foreacht € T.

THEOREM6.2. For each safe Petri net N, algorithm 1 terminates.

PROOF The termination of algorithm 2 follows from theorem 6.1. But clearly, a safe Petri
net has only finitely many reachable markings, namély(my)| < 21"l O

THEOREM6.3. Let A be a concurrent automaton of a safe Petri net N generated by algo-
rithm 1. Then Ais correct.

PROOF. For each paifm,m) € Ry and for alla e Ax(m,m') we havem=== n by corollary
4.6. Now the theorem follows by a simple induction on the lengti a patha = mamy ...my,
throughA. O

THEOREM®6.4. Let A be a concurrent automaton of a safe Petri net N generated by algo-
rithm 1. Then A is complete.

PROOF Assume“«(my:) —Z(A) £ @. Letae ming (A (M=) —Z(A)). Choose some
b € maxc(<~1(a)N.Z(A)). Then neithel = € norb = ¢, sincet; < ¢ for eachc € .£(A) U
I+ (my+). Because ob € £ (A), there is a patly = mamymy, ... m, throughA such that there is
somec € .Z(a) with ¢ < b. Puta to be of maximal length such thag max< (<~1(b)N.Z(A)).

Now letb =copn+ d. anda= coy+d'. d= ¢ = d' is impossible since this would imply=b
in contradiction ta ¢ -Z'(A). Supposel = £ andd’ + ¢. LetC = Ay (ming , (Ey)). ThenCis an
enabled step aty,, and therefore there is a st€pC Ty« generated by the procedurex_steps
with C'NC % @. This implies[c oy s0(C')] € £ (A), and alsdc Oy so(C'NC)] € £ (A) Then
b < [con+ 0(C'NC)] < a, which contradictd € max (<~1(a)N.Z(A)).

submitted toConcurrency Specification and Programming’ 98, Berlin, September 1998

ALGORITHMIC ASPECTS OF CONCURRENT AUTOMATA 11

Henced #+ ¢ andd’ + e. We haved < d'. Let m = m, + AE4. Note thatm cannot be in
Ma, since otherwise the maximality of the pathwould be contradicted. Put such thata =
coOn-dON+ d. d = g is impossible since this would imply= b.

LetF ={f e sw(Tn+):f £ e& bon«f € . Z(A)} be the set of continuations bfin .Z(A).
Note that each € F is enabled am. F + &, since otherwisenwould be a dead state. Therefore,
m € Ma by lemma 5.5, which contradicts the maximalityafa € ming (A« (M) — 2 (A))
implies Aa(ming, (Ea)) N At (Ming, (Ef)) = @ for all f € F. Lett € Ag(ming,(Ey)). Assume
Ci(t) = @. If Cy(t) = @ or Cy(t) + @ such that condition T3 is satisfied f@d ©- t], thent
could be added td by line 3 of algorithm 2. Theffb ©n«t] € .#a(ma) in contradiction tob €
maxc (<~1(a)N.Z(A)). On the other hand, ,(t) & 2 and condition T3 is not satisfied, then
d wound be extended by algorithm 2 to some semioddeiand a new ar¢m,, m*) with m* =
my + AEg+ will be added toA such thatd* € Aa(mn, m"). Since algorithm 2 adds only transitions
with empty forward conflict relation td*, we have thatn <t~ impliesm* <t~. Then, a step
C containingt would be constructed a* in line 4 of algorithm 1, i. §d Oy« t] < [d* On«t] €
I (my+). This impliesb On«t] € Ay (M-), @ contradiction td € max< (< 1(a) N Z(A)).

We concludeC(t) + @. Repeating the argument abodewill be extended tal* by algo-
rithm 2, and an ar¢m,, m*) such tham* = my + AEg« andd* € Ax(ma, m*) will be introduced.
Since algorithm 2 adds only transitions with empty forward conflict relatiafi'tave have that
m <t~ impliesm* <t™. Then, a stef containingt would be constructed ab* in line 4 of
algorithm 1, i. e[d On- t] < [d* On-t] € S+ (My+). This implies[b On«t] € A (M«). Again,

b € max (< 1(a)N.Z(A)) would be contradicted. This concludes the proof. O

A conflict cluster of a Petri netN is a maximal seD C Ty such that +t' =t C; t for all
t,t’ € D holds. Letéy be denote the set of conflict clustershf

THEOREM6.5. Thetime effort of the computation of a concurrent automaton A for a Petri
net N by algorithm 1is O (2P x (2€+Ty|)), wherek = max{|D| : D € - }.

PROOF. The first factor, #v*|, is simply the maximal number of reachable statedof
2%+ |Ty+| is obtained as follows: For each reachable markirgf N*, the procedurenax_steps
computes at most x 2K steps for some constaat> 0. (examples where equality holds can be
easily constructed). For each of this steps, at rfigt events are added by algorithm 2, hence
the time effort to process a state completel@{@ + Tn|). O

7. Summary and Further Works

We have introduced the formalism of a concurrent automaton for a safe Petri net. The use of
concurrent automata instead of reachability graphs has the benefit that concurrency of transition
does not necessarily lead to the state explosion problem. Moreover, since global states (markings)
are maintained, it is possible to rejoin branching behaviouté.dh some cases, this will yield
a smaller representation of the behaviouNahan the prefix.

A basic algorithm for the generation of a concurrent automaton has been presented. It has
been shown, that the concurrent automaton constructed by this algorithm is correct and complete
w. r.t. semi language equivalence in the sense of section 5.

However, it is unlikely that this basic algorithm has acceptable run-times for other then small
Petri net examples. An inspection of some medium-sized Petrin&id¢ads to the observation,
that almost every transitianin these examples is involved in a forward confli€t(¢) &+ @) or
a backward conflict@,(t) & @), i. e. algorithm 1 will be in practice not significantly faster then
usual reachability graph generation.

submitted toConcurrency Specification and Programming’ 98, Berlin, September 1998

12 PETER DEUSSEN

Concentrating on forward conflicts, we may improve algorithm 1 in the following way:
Instead of using the relatios to construct steps by the procedumax_steps, we may use the
relationJr defined byty Jrto >y It t2 & Ime Zn(my)(M >t & m> ty). In practice,Jr
cannot be determined without an exhaustive net analysis such as reachability graph generation
or prefix generation. However, any relatidrsuch thatly C I’ C I+ will also do the job.

Then the problem can be restated as follows:tLandt, be transitions of a Petri nét such
thatt; C; to holds. If for every markingn € #n(my) there is some placp such thaim(p) =0
and(t; +t;)(p) > 0, then puty I t,, i. e. we have to compute whether a markingvith m >t~
andm > t5 is unreachable iN.

There are several methods of classical Petri net theory to prove the unreachability of a mark-
ing m, for instance net analysis be means of place invariants, the state equatiofi0jskee [
details), or by traps or deadlocks.

Another question is which net properties can be determined using concurrent automata.
Lemma 5.5 states that the existence or absence of dead states can be proved by inspection of
a concurrent automaton very easily. The same applies to liveness of transitions. Techniques for
more sophisticated analysis goals are in preparation. Especially, it seems to be likely that it is
possible to determine so-callgdrtial order properties by means of concurrent automata, i. e
those properties related to the concurrency of transitions.

References

. E. Best and C. Feamdez Nonsequential processes, EATCS, vol. 13, Springer, 1988.

. P. DeusserConcurrent automata, Tech. Report 1-05/1998, Brandenburg Techn. Univ. Cottbus, 1998, to appear.
. J. EngelfrietBranching processes of Petri nets, Acta Inf. 25 (1991), pp. 575-591.

. J. Esparzaylodel checking using net unfoldings, Science of Computer Programmi@g (1994), pp. 151-195.

. J. Esparza, S.drvier, and W. VoglerAn improvement of McMillan's unfolding algorithm, Tech. Report SFB-Report

342/12/95 A, Techn. Univ. of Mrichen, 1995.

. J. GrabowskiDn partial languages, Fund. Inform4 (1981), no. 2, pp. 427-498.

7. M. Heiner,Verifaction and optimization of control programs by Petri nets without state explosion, Proc. 2nd Int.
Workshop on Manufacturing and Petri Nets held at Int. Conf. on Application and Theory of Petri Nets (ICATPN
'97) (1997), pp. 69-84.

8. M. Heiner, P. Deussen, and S. Sprandecase study in design and verification of manufacturing system control
software with hierarchical Petri nets, The Int. Journal of Advanced Manufacturing Technology, special issue on
Petri Net Applications in Advanced Manufacturing (1998), to appear.

9. K. L. McMillan, Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits,
Proc. of the 4th Workshop on Computer Aided Verification (Montreal), 1992, pp. 164-174.

10. S. Melzer and J. Espar2é#rification of system properties via integer programming, Programming Languages and
Systems—ESOP’96 (H.R. Nielson, ed.), LNCS, vol. 1058, Springer-Verlag, 1996, pp. 250-264.

11. M. Nielsen, G. Plotkin, and G. Winske®etri nets, event structures and domains, Part |, Theoretical Computer
Sciencel3 (1981), pp. 85-108.

12. P. H. StarkeProcessesin Petri nets, J. Inf. Process. Cybern. EIkK7 (1981), no. 8/9, pp. 389-416.

13. , Graph grammars for Petri net processes, J. Inf. Process. Cybern. EI¥9 (1983), no. 4/5, pp. 199-233.

14. , Analyse von Petri-Netz-Modellen, G. B. Teubner, Stuttgart, 1990.

15. A. Ulrich, A description model to support test suite derivation for concurrent systems, Tech. Report 1-06/1996,
Brandenburg Techn. Univ. Cottbus, 1996.

, A description model to support test suite derivation for concurrent systems, Kommunikation in verteilten
Systemen, GI/ITG-Fachtagung (KiVS'97), Springer-Verlag, 1997, pp. 151-166.

17. W. Vogler,Modular construction and partial order semantics of Petri nets, LNCS, vol. 625, Springer-Verlag, 1992.

a s wnN e

[o2]

16.

submitted toConcurrency Specification and Programming’ 98, Berlin, September 1998

