
6 / 6

Heiner, Menzel: Instruction List Verification Using a Petri Net Semantics

0-7803-4778-1/98 $ 10.00  1998 IEEE

This structure of the net makes it easy to interpret any results of
the Petri net analysis in terms of the source code.

The initial marking of the Petri net is also given by the result
tuple from . The part describes the used
variables with types (number of places) and initial values
(marking of these places).

The Petri net for the user program of the 2-hand switch PLC
consists of 45 places and 126 transitions, the total net including
the environment model comprises 58 places and 142 transitions.
For more details, including the model of the environment and of
the system program, see [Heiner 98b]. More challenging case
studies (production cells comprising several machines) are
under preparation.

5. CONCLUSIONS AND RELATED WORK

Computer-aided verification should rely on verified tools, or at
least on tools developed as careful as possible. For that reason,
a Petri net semantics has been introduced formally for a subset
of the standardized Instruction List language [IEC 1131-3]. The
subset’s syntax as well as static and operational semantics have
been specified strictly. Afterwards, the classical operational
reference semantics has been substituted by an equivalent Petri

net semantics. Due to this prudent practice, the equivalence
proof of the substitution step is quite obvious, and the imple-
mentation of the translator has been proven to be straight-
forward. To stress the analyzability of the generated Petri nets,
the net semantics has been described completely in terms of
ordinary safe place transition Petri nets. The used graphical
enhancements are just syntactical sugar. Due to the structural
regularities, many net components might be folded to coloured
Petri nets.

Related work may be found in [Hanisch 97], where IL programs
are modelled by Timed Net Condition/Event Systems
(TNCES). The advantage of TNCES is their dedicated
modelling power, which excludes however (at least up to now)
most of the sophisticated analysis options. [Rausch 97]
discusses generally the transformation between different model
forms in discrete event systems.

In the future we intend to weaken the IL0 restrictions step-wise
into the direction of the whole language IL. This will include
multiprocessor and multitasking systems, where the Petri net
based design and analysis methodology promises its best
results. Moreover, the incorporation of other standardized PLC
languages might be considered (see e. g. [Heiner 97a] for the
transformation of Sequential Function Charts into Petri nets).

REFERENCES

[IEC 1131-3]
IEC Standard 1131-3, Programmable controllers - Part 3: Pro-
gramming languages; Int. Electrotechnical Commission, 1993.

[Hanisch 97]
Hanisch, H.-M. et al.: Modeling of PLC Behavior by Means of
Timed Net Condition / Event Systems; Proc. 6th IEEE Int. Sympo-
sium on Emerging Technologies and Factory Automation (ETFA
‘97), Los Angeles, Sept. 1997, pp. 361-396.

[Heiner 97a]
Heiner, M.: On Exploiting the Analysis Power of Petri nets for the
Validation of Discrete Event Systems; Proc. 2nd IMACS Sympo-
sium on Mathematical Modelling (MATHMOD VIENNA ’97),
Vienna, February 1997, ARGESIM Report No. 11, pp. 171-176.

[Heiner 97b]
Heiner, M.; Menzel, T.: Petri Net Semantics for the PLC User pro-
gramming language Instruction List (in German); Techn. Report
BTU Cottbus, I-20/1997, Cottbus December 1997.

[Heiner 98a]
Heiner, M.: Petri Net Based System Analysis without State Explo-
sion; Proc. High Performance Computing ‘98, Boston, April 1998,
SCS Int. San Diego 1998, pp. 394 - 403.

[Heiner 98b]
Heiner, M.; Menzel, T.: A Petri Net Semantics for the PLC Lan-
guage Instruction List; IEE Workshop on Discrete Event Systems
(WODES ‘98), Cagliari/Italy, August 1998.

[Mosses 90]
Mosses, P. D.: Denotational Semantics; in: Leeuwen, J. v. (ed.):
Handbook of Theoretical Computer Science; Elsevier Sc. Publ.
1990, pp. 576-631.

[Rausch 97]
Rausch, M.; Krogh, B.: Transformations Between Different Model
Forms in Discrete Event Systems; Proc. IEEE Int. Conf. on Sys-
tems, Man, and Cybernetics, Orlando, October 1997, pp. 2841-
2846.

Parse switch()= switch prg n,〈 〉, ,〈{
Step_0 rw bool T,〈 〉, ,〈 〉,{
Step_1 rw bool F,〈 〉, ,〈 〉,
Step_1 rw bool F,〈 〉, ,〈 〉,
S1 r bool F,〈 〉, ,〈 〉,
S2 r bool F,〈 〉, ,〈 〉,
O1 r bool F,〈 〉, ,〈 〉,
O2 r bool F,〈 〉, ,〈 〉,
Ausgang rw bool F,〈 〉, ,〈 〉,
A rw bool F,〈 〉, ,〈 〉,
B rw bool F,〈 〉, ,〈 〉 } ?, ,
LD Step_0() bool,〈 〉 AND S1() bool,〈 〉, ,[
AND S2() bool,〈 〉 ANDN O1() bool,〈 〉, ,
ANDN O2() bool,〈 〉 R Step_0() bool,〈 〉, ,
S Step_1() bool,〈 〉 S Output() bool,〈 〉, ,
LD Step_1() bool,〈 〉 ST A() bool,〈 〉, ,
LD O1() bool,〈 〉 OR O1() bool,〈 〉, ,
ORN S1() bool,〈 〉 ORN S2() bool,〈 〉, ,
ST B() bool,〈 〉 LD A() bool,〈 〉, ,
AND B() bool,〈 〉 R Step_1() bool,〈 〉, ,
S Step_2() bool,〈 〉 R Output() bool,〈 〉, ,
LD Step_2() bool,〈 〉 ANDN S1() bool,〈 〉, ,
ANDN S2() bool,〈 〉 AND O1() bool,〈 〉, ,
AND O2() bool,〈 〉 R Step_2() bool,〈 〉, ,
S Step_0() bool,〈 〉] }

Figure 6: Result of the parsing function.

4

3

2

Begin IL (1)

26

25

End IL (27)

AND C2

AND C1

LD Step_0

R Step_2
S Step_0

Figure 7: User program as a Petri net.

e Parse Env0

5 / 6

Proc. 1998 IEEE Int. Conference on Systems, Man, and Cybernetics,
Session “Controller Verification and Design”, San Diego, October 1998, pp. 716-721.

0-7803-4778-1/98 $ 10.00  1998 IEEE

(3) 4. EXAMPLE

To illustrate the
whole transfor-
mation process,
let’s consider a
small, but
realistic
example. Many
safety-oriented
equipment like presses use 2-hand switches, which require the
operation by both hands. The output is on if switch 1 and switch
2 are pressed at the same time (without a significant delay in
between). The closers work complementary to the related
openers (closer 1 to opener 1 and closer 2 to opener 2). The
principle construction is shown in figure 5. A possible coding of
the intended PLC behaviour in an IL0 program is given below:
1 PROGRAM switch
2 VAR
3 Step_0:BOOL:=TRUE;
4 Step_1, Step_2:BOOL:=FALSE;
5 END_VAR
6 VAR_INPUT
7 C1, C2, O1, O2:BOOL;
8 END_VAR
9 VAR_OUTPUT
10 Output:BOOL:=FALSE;
11 END_VAR
12
13 LD Step_0
14 AND C1
15 AND C2
16 ANDN O1
17 ANDN O2
18 R Step_0
19 S Step_1
20 S Output
21 LD Step_1
22 AND (O1
23 OR O2
24 ORN C1
25 ORN C2
26)
27 R Step_1
28 S Step_2
29 R Output
30 LD Step_2
31 ANDN C1
32 ANDN C2
33 AND O1
34 AND O2
35 R Step_2
36 S Step_0
37 END_PROGRAM

The result of executing is given in figure 6.
Please note that all bracket structures have been substituted.

Based on the parsing result, we generate now a Petri net (see
figure 7). The first place of this net is Begin IL and the last one
is End IL. The other places belong to the subnets of the Petri net
semantics for the corresponding commands. These connection
places (in the Petri net semantics the places labelled with) are
now labelled with the position of the command in ,
whereby places with the same name are merged. As a result of
this composition we get a sequence of subnets. Each subnet
represents a command, and its sequence position corresponds to
the position of this command in the transformed source code.

Computee i ADD x,()=

i

c_0c_1

i + 1

a_0 := a_0 + x_0

a_7 := a_7 + x_7 + c

...

x_0_1

x_0_0

c_1c_0

a_0_1 c_0

a_0_0

c_0

a_0_0

x_0_1a_0_1

a_0_1

a_0_0

x_0_0

a_0 := a_0 + x_0

a_1_1

x_1_1

c_0

a_1_0

c_1

c_0

a_1_1

c_1

x_1_0

a_1_0

a_1_0

a_1_1

x_1_0

c_1

c_0

x_1_1

a_1_1

a_1_0

x_1_1

a_1_0

c_1

x_1_1

a_1_1

c_1

x_1_0

a_1_1

c_0

c_0

a_1_0

x_1_0

a_[1-7] := a_[1-7] + x_[1-7] + c

Figure 5: Structure of a 2-hand switch.

switch 1 switch 2

closer 1 closer 2

opener 1 opener 2O1 O2

C1 C2

e Parse p()=

i
Code

4 / 6

Heiner, Menzel: Instruction List Verification Using a Petri Net Semantics

0-7803-4778-1/98 $ 10.00  1998 IEEE

Syntactical Conventions
In the following paragraphs, Petri nets with some extensions in
the graphical representation are given. E. g. the Petri nets are
modelled hierarchically. But here the hierarchy is of syntactical
nature only. We don’t use any semantic composition. Before
analysing these nets, they must be flatten. A summary of the
syntactical extensions, used in this paper, is given in table 1.

Additionally, a new kind of
edges is introduced. The read
arc possesses as a head a black
circle instead of an arrow (see
figure 2). This kind of edge has
always a place as source and a
transition as target node. The
firing rule is changed in the
way that no tokens are moved
from/to the source place via a read arc. The place can be inter-
preted as a side condition of the transition, which do not restrict
concurrency. Under the interleaving semantics, these arcs can be
transformed into two usual arcs (one for each direction between
place and transition).

The resulting Petri net components are quite large and exhibit
many repetitions. Due to this fact we will use the following
conventions in order to save space. If a subnet structure would be

 times repeated, we write the first and the last subnet only, and
mark the repetition with three dots. We choose intuitive node
names for structurally equal subnets. An example for this
compression is shown in figure 3.

(Remark: to be conform to all bit-oriented operations, working
step-wise from the lowest to the highest bit, the concurrent nature
of word instructions, e. g. assignments, is neglected here.)

Binary Representation
We are modelling variable values in a binary form, where each
bit is represented by two places forming a place invariant (see
figure 4). Generally, this approach works more efficiently than

those way of modelling, where each variable is represented by as
many places as there are values which the variable may assume.
Now we are ready to model the algorithms of binary algebra, and
by this way to formulate the Petri net semantics of IL0 in the next
paragraph.

Petri Net Semantics
In the following we will give a Petri net semantics for the three
examples of IL statements from above. Based on these examples,
it should become fairly obvious that the definition of the other
Petri net components is straightforward.

As precondition we need (like before) a successful execution of
the function with the result in . Therefore we have - in
analogy to the previous operational semantics - a function

, too.

After the execution of the function we have just to parse
sequentially the ordered list of , and for each statement in

 we insert an appropriate Petri net component. The label
 is substituted by the line number, and is substituted by the

name of the operand. The composition of the net components
(each command has its own) results into the model of the whole
IL0 program. This composition works simply sequentially and is
realized via the logical place mechanism.

(1)

Please note: the middle transition summarizes two of the
four value combinations of the two Boolean operands.

(2)

logical place -- all logical places with the same name
collapse to the same place during the flatten process

transition bounded subnet -- subnet where the border
nodes (nodes with a connection to the net one level
higher) are only transitions

Table 1: Syntactical Petri net extensions.

read arc

Figure 2: Read arc example.

a_7 := b_7

a_0 := b_0

...

a_[0-7] := b_[0-7]

a_[0-7]_0

a_[0-7]_1

a_[0-7]_1

a_[0-7]_0

b_[0-7]_1b_[0-7]_0

Figure 3: Example of repetitions of a subnet.

a_[0-7] := b_[0-7]

n

1

B3 B2 B1 B0

0

Figure 4: Example of a 4-bit number
(1110 = 10112).

P arse e

Computee
P arse

Code
Code
i x

Computee i AND x,()=

a_0

a_0

a_1

x_0x_1

a_1

i

i+1

Computee i JMPC x,()=

a_1a_0

i

i+1 x

3 / 6

Proc. 1998 IEEE Int. Conference on Systems, Man, and Cybernetics,
Session “Controller Verification and Design”, San Diego, October 1998, pp. 716-721.

0-7803-4778-1/98 $ 10.00  1998 IEEE

semantics definition, we just quote - without any comments -
the functions of the remaining syntax rules given above.

After the evaluation of the function for a given IL0

program , consists of a flat (without procedure and
function calls) IL0 program without any brackets and with
explicit jump goals (line numbers instead of labels). The
resulting strictly sequential IL0 program is correct with respect
to its syntax and static semantics.

Operational Semantics
After parsing and context checking successfully, we get a
simple list of commands. Now we are able to define conven-
iently an operational semantics describing the transitions
between program states. Such a program state is defined as tuple

, where:

• is the line number (list index from)

• , a memory state

• , an accumulator, where is the current value
and its type (in the following stands shortly for the
value, and for the type).

Let be an IL0 program, and the environment obtained by
the successful evaluation of . Now we define for
each command a state transition under . Let’s give three
examples:

(1)

The result of the logical operation and, applied to the accu-
mulator value and the value of the operand , yields the
new value of the accumulator.

(2)

If the accumulator value is TRUE, then jump to the line
number , otherwise ignore the jump and start with the
execution of the next code line. There are no changes in the
accumulator.

(3)

The result of the integer operation addition, applied to the
accumulator value and the value of the operand , yields
the new value of the accumulator.

While defining the operational semantics we don’t need any
type check, because this has been done during the execution of
the function . In the forthcoming section we describe this
polished operational semantics by Petri nets.

3. PETRI NET SEMANTICS

In the section above, a formal definition of the language IL0 has
been introduced. Now we define the operational semantics as
Petri net substituting the classical reference semantics.

P rg : PRG FbNames E! nv()!

P rg[[PROGRAM PRGNAME

PRGVARDECL CODE END_PROGRAM]] n()=

PRGNAME[[]] prg n,〈 〉,〈
P rgV arD ecl PRGVARDECL[[]] n(),
C odeL abel CODE[[]] C ode CODE[[]] 2[]〉,

P rgV arD ecl: PRGVARDECL FbNames E! nv0()!

P rgV arD ecl v1 … v, ,[[]] n()= P rgD eclC on vi[[]] n()
i 1=

k
[

C ode: CODE Env Domain£ Bool Env£!()!

C ode s1↵ s2↵… sk[[]] e d,()=

∧
k

i=1
Stmt si[[]] e d,() 1[] , Stmt si[[]] e d,() 2[]〉

i=1

k
[〈

Stmt: STMT Env Domain£ Bool Env£!()!

Stmt BOOLOP[[]] e d,()=B oolOp BOOLOP[[]] e d,()
Stmt ANYOP[[]] e d,()=AnyOp ANYOP[[]] e d,()
Stmt BROp[[]] e d,()=B rOp BROP[[]] e d,()
Stmt JMPOP[[]] e d,()=JmpOp JMPOP[[]] e d,()
Stmt CALLOP[[]] e d,()=C allOp CALLOP[[]] e d,()
Stmt RETOP[[]] e d,()=R etOp RETOP[[]] e d,()

B oolOp : BOOLOP Env Domain£ Bool Env£!()!

B oolOp BOOLCMD OPERAND[[]] e d,()=

T〈 N〈 ame e() d Env0 e() Label e(), , , ,,

C〈 ode e() BOOLCMD OPERAND() bool{ }〉〉〉,〈·

if bool D Type OPERAND[[]] Env0 e()() ^2

last Code e()() 2[] bool{ }^ ^

Access OPERAND[[]] Env0 e()() r rw,{ } ^2

BOOLCMD[[]] {AND ANDN OR ORN XOR,, , , ,2

XORN}

T〈 N〈 ame e() d Env0 e() Label e(), , , ,,

Code e() BOOLCMD OPERAND() bool{ }〉〉〉,·

if bool D Type OPERAND[[]] Env0 e()()2 ^

Access OPERAND[[]] Env0 e()() r rw,{ } ^2

BOOLCMD[[]] LDN{ }2

T〈 N〈 ame e() d Env0 e() Label e(), , , ,,

C〈 ode e() BOOLCMD OPERAND() bool{ }〉 〉,〈·

if bool D Type OPERAND[[]] Env0 e()()2 ^

last Code e()() 2[] bool{ }
Access OPERAND[[]] Env0 e()() w rw,{ }2 ^

BOOLCMD[[]] STN S R, ,{ }2

F〈 N〈 ame e() d Env0 e() Label e() Code e() ? ?,〈 〉〉 〉,, , , ,,

? ?,〈 〉〉〉
otherwise






































P arse

p Code

i m a, ,()
i Code

m Env02

a v t,()= v
t a.v

a.v

p e
e P arse p()=

e

i m a, ,() i 1+ m m x() a.v^ a.t,(), ,()e
AND x!

x

i m T bool,〈 〉, ,() x m a, ,()e
JMPC x!

i m F bool,〈 〉, ,() i 1+ m a, ,()e
JMPC x!

x

i m a, ,() i 1+ m m x() a.v+ a.t,(), ,()e
ADD x!

x

P arse

2 / 6

Heiner, Menzel: Instruction List Verification Using a Petri Net Semantics

0-7803-4778-1/98 $ 10.00  1998 IEEE

program into a Petri net, which is highlighted by a grey
background in figure 1. To keep the paper within the given
limits, we do not claim to give here complete and detailed formal
definitions. The interested reader is referred to [Heiner 97b] for
a self-contained description of IL0 and its Petri net semantics.

2. IL0 - A SUBSET OF IL
In this section we describe a subset of the PLC programming
language IL, named IL0. Because of several libraries with
additional commands, the complexity of IL is quite excessive.
Opposed to that, the language IL0 exploits some restrictions, the
essential ones are:

• default commands only
(i. e. the complete statement set of IL - altogether 47 com-
mands, but no additional commands from any library),

• data types to a length of 8 bit only
(Boolean, 8-bit word, unsigned short integer, short integer),

• no commands and data types for time and date,

• single processor / single task only.

The basic intention of the chosen language restrictions is to start
with simpler problems before going ahead to more complicated
ones. IL0 is already powerful enough for many realistic PLC
programs. Nevertheless, a step-wise weakening - as far as
possible - of the imposed simplification is under consideration.

In the next paragraphs we follow the path of a step-wise formal
definition of IL0. At first we specify an abstract syntax. After
that, we define a static semantics in the style of a denotational
one. By this way, the allowed semantic context of all language
constructs is specified strictly. Finally, we give an operational
semantics of IL0 in a classical style as reference semantics which
will be substituted later by a Petri net based one.

Abstract Syntax of IL0

At first we need an abstract syntax to define strictly the syntac-
tical frame of IL0. An abstract syntax looks like a concrete one,
with the exception that they differ in the degree of details. The
abstract syntax ends with nonterminals like <PRGNAME>,
leaving them unspecified, if the details are irrelevant for the
intended purpose of the syntax. The abstract syntax of IL0 is
formulated in Extended Backus Nauer Form, consisting
altogether of 48 rules. To have concrete examples in mind, we
quote six of these rules.

Any syntax describes possible derivation trees with nonterminals
as root. The so-called starting rule (the first one given above)

describes the derivation tree of the whole IL0 program.
According to this rule, an IL0 program consists at least of a
program part, possibly followed by an arbitrary set of function
blocks and functions in any order.

Static Semantics
In the paragraph above, a syntactical frame of IL0 has been intro-
duced. Now we are ready to define context conditions in a
denotational style [Mosses 90]. For that purpose, we are going to
specify a function for each nonterminal of the given syntax to
check its semantic context. Additionally, these functions
perform some semantics-preserving program code transforma-
tions lightening the following operational semantics definition.

Each nonterminal describes a derivation tree. Therefore, each
function to be defined has (at least) a tree as parameter and
returns (at least) a tuple , describing the total environment
of the program (all variables and labels) as well as the program
code itself (but without any variable declarations).

The main function is:

where is a syntactical correct IL0 program. The result of the
function is the tuple

, with

• - name of the program

• , where
- program,
- function block,
- function,
- no brackets, and
- brackets

• - tuple for variables

• - set of used line labels

• - the ordered list of code,
where are program statements

All procedure and function calls are substituted by the procedure
Flat. All labels in jump statements are replaced by the corre-
sponding line numbers by the procedure ChangeMark.

The function corresponds to the starting rule of the
abstract syntax above.

During the evaluation of any bracket structure (AND(,
ANDN(, GE(,...) is resolved by inserting a new variable,
which buffers the accumulator value at the beginning of that
bracket structure, and which is stored back at the end of the
bracket structure.

To give at least a flavour of the denotational style of static

<IL0> → <PRG> {<FB> | <FCT>}

<PRG> → ’PROGRAM’ <PRGNAME>
<PRGVARDECL>
<CODE>

’END_PROGRAM’

<PRGVARDECL> → <FBINSTDECL> | <INVARDECL> |
<OUTVARDECL> | <GLOBALVARDECL>

<CODE> → {<STATEMENT>}

<STMT> → <BOOLOP> | <ANYOP> | <BROP> |
<JMPOP> |<CALLOP> | <RETOP>

<BOOLOP> → <BOOLCMD> <OPERAND>

Env

P arse: IL0 Env!

P arse p()=C hangeM ark Flat I L 0 p()()()

p
P arse

Env Name Domain Env0£ Label£ Code££=

Name

Domain prg fb fct, ,{ } n b,{ }£=
prg
fb
fct
n
b

Env0
Label

Code s0 s1, s2 … sn, , ,[]=
si

I L 0

I L 0 : IL0 Env!

I L 0 prg↵ f b1↵…↵ fbk↵ f ct1↵…↵ fctn[[]]=

P rg prg[[]] F(bNames(
prg↵ f b1↵…↵ fbk↵ f ct1↵…↵ fctn[[]])) [

F b f bi[[]]
i 1=

k
[

 
 
 

F ct fcti[[]]
i 1=

n
[

 
 
 

[

I L 0

1 / 6

Proc. 1998 IEEE Int. Conference on Systems, Man, and Cybernetics,
Session “Controller Verification and Design”, San Diego, October 1998, pp. 716-721.

0-7803-4778-1/98 $ 10.00  1998 IEEE

ABSTRACT

In order to adapt a Petri net based verification framework to
programmable logic controllers, a Petri net semantics is intro-
duced formally for a subset of the standardized Instruction List
language [IEC 1131-3]. For that purpose, the subset’s syntax as
well as static and operational semantics are specified strictly.
Having that, the operational reference semantics is substituted by
an equivalent Petri net semantics. Due to this prudent practice,
the equivalence proof of the substitution step is obvious.

1. MOTIVATION

The development of provably error-free discrete event
controllers is still a challenge of practical system engineering - in
spite of encouraging results of world-wide promoted academic
research on formal methods. This paper aims at decreasing the
still existing gap between current practice and promising theory.

In current practice, controllers are often implemented by
Programmable Logic Controllers (PLC). Up to now, the
Instruction List (IL) is one of the favourite programming
languages of PLC design. The instruction list language is part of
the international standard IEC 1131-3, moreover several in-
house variations exist in outstanding companies.

On the other side, Petri net theory offers in the meantime a rich
amount of promising sophisticated analysis techniques allevi-
ating the state explosion problem. Related tools have reached, at
least partly, an acceptable standard. For an overview and
experience report, demonstrating the Petri net’s analysis power
by case studies, see e. g. [Heiner 98a]. To get the richest amount
of analysis facilities, we restrict ourselves in the following to
ordinary safe (1-bounded) place transition Petri nets.

In order to be able to apply a Petri net based verification
framework on IL-written PLC, we introduce formally a Petri net
semantics for the international standard’s IL, which may be
adopted very easily to any of its variations. For that purpose, we
define an IL subset (the IL0), comprising only default commands
and data structures up to a length of 8 bits. Based on an abstract
syntax of IL0, we give its static semantics in the style of a denota-
tional one to specify context conditions, and its operational
semantics in a classical style playing the role of a reference
semantics. Having that, the classical operational reference
semantics is substituted by an equivalent Petri net semantics.
Due to the efforts done up to here, the equivalence proof of the

substitution step is obvious. Moreover, based on this formal
semantics definition, the realization of an automatic IL trans-
lation into Petri nets has been proven to be straightforward.

To get a self-contained verifiable system model, two additional
aspects have to be taken into account: at first the embedding of
the generated Petri net model of the IL user program into a PLC’s
system program model, and the interconnections between the
models of the controller program and of the uncontrolled plant.
For a discussion of both aspects in the context of a case study see
[Heiner 98b].

After this translation, we are able to prove functional and safety
requirements, the PLC is expected to fulfil, by means of the
generated Petri net. For that, the requirements have to be
specified by formulae of temporal logics. Afterwards, model
checkers may be used for verification/falsification of these
formulae in the net. Figure 1 shows the principle cycle of the
model-based verification of PLC user programs.

In this paper, we restrict ourselves to the transformation of an IL*) This work is supported by the German Research Council
under grant ME 1557/1-1.

Figure 1: Model-based validation of PLC software
(e. g. by Petri nets).

requirements

controller plant safety
requirements

compiler modelling

temporal

library

control
model

environment
model

set of
temporal

composition

system
model

verification methods
errors /

formulae

logic

functional

inconsistencies

Instruction List Verification Using a Petri Net Semantics *)

Monika Heiner, Thomas Menzel

Brandenburg University of Technology at Cottbus
Department of Computer Science

Postbox 10 13 44, D - 03013 Cottbus, Germany

mh@informatik.tu-cottbus.de, thm@informatik.tu-cottbus.de
http://www.informatik.tu-cottbus.de

Phone: (+ 49 - 355) 69 - 3885, Fax: (+ 49 - 355) 69 - 3830

