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Abstract
In this paper we will describe a Petri net semantics of the
PLC language Instruction List (IL) defined in [DIN EN
61131-3] (IEC 1131-3). This is a nessessary prerequisite
to be able to analyse functional and especially safety re-
quirements of IL programs. We will define a subset of IL
(IL0) and give formal definitions with reference seman-
tics for this subset. After this the reference semantics is
transformed into a Petri net model.

1 Introduction
Programable Logic Controller (PLC) are currently used
in many complex industrial areas. It is very important to
verify the user program in the PLC in view of given re-
quirements. One possibility to do this is to use Petri nets.
There are two approaches:
• Petri nets as modelling tool (synthesis, [Rausch96])

and
• Petri nets as a model to analyse (transformation,

[Hanisch97], [Rausch97])
In our department we work on the second approach. The
goal is to translate an existing program (here written in
IL) into a Petri net. After this translation, we can prove
functional and safety requirements by means of the gen-
erated Petri net. The requirements can be formulated by
formulae of temporal logics, and then we will use model
checkers to check the validily of these for formulae in the
net. Figure 1 shows the principle cycle of the validation
of a PLC user program. This cycle is divided in two main
streams:
• generate a model of the IL program and of the envi-

ronment (plant)
• create formulae of temporal logic for the require-

ments.
The whole system model is a result of the composition of
the control model as a Petri net and the environment mod-
el as a Petri net. After the composition it is possible to

proof the given set of temporal formulae in the system
model.
In this paper we show a possible transformation of an IL
program into a Petri net. This transformation process is
highlighted in Figure 1. This paper is based upon
[Heiner97-1] and [Heiner97-2].

2 IL0 - a Subset of IL

In this section we describe a subset of the PLC program-
ming language IL, named IL0. Because of the several li-
braries with additional commands, the complexity of IL
is quite high.
The language IL0 has some restrictions which make it a
subset of IL:
• default commands only

(no additional commands from any library)
• datastructures to a length of 8-bit only

(boolean, 8-bit word, unsigned short integer,
short integer)

• no commands and data structures for time and date
In the next section we show the way to the formal defini-
tion of IL0. At first we specify an abstract syntax. After
that we define a static semantics in the style of a denota-

Figure 1 Validation of PLC programs by PetriNets

requirements

controller plant safety
requirements

compiler modelling

temporal

library

control
model

environment
model

set of
temporal

composition

system
model

validation methods
errors /

formulae

logic

functional

inconsistencies

A Petri Net Semantics for the PLC Language Instruction List*)

Monika Heiner, Thomas Menzel

Brandenburg University of Technology at Cottbus,
Department of Computer Science, Postbox 101344, D-03013 Cottbus

{mh, thm}@informatik.tu-cottbus.de
http://www.informtik.tu-cottbus.de



tional one. With this semantics we define the allowed se-
mantical context of the language. Finally we give an
operational semantics of IL0 as a reference semantics.
To keep the paper short, we do not show any complete
and detailed formal definitions in the sections below. The
interested reader is reoffered to [Heiner97-2] for a com-
plete description of IL0.

2.1 Abstract Syntax of IL0

At first we need an abstract syntax to define the syntacti-
cal body of IL0 formally. An abstract syntax looks like a
concrete syntax. The difference is only the degree of de-
tail. In the abstract syntax we end with nonterminals like
<PRGNAME> and declare at this point that the nontermi-
nal is unspecified. The details are not interesting in the
given context. With the abstract syntax we would like to
describe possible derivation trees with nonterminals as
root. Our abstract syntax is formulated in Extended Back-
us Nauer Form, and has altogether 48 rules. To have a
concrete example in mind, we take the first of these rules,
the so-called starting rule:.

This rule describes the derivation tree of the whole given
IL0 program.

2.2 Static Semantics
In the section above we have introduced a syntactical
body of IL0. Now we define context requirements. We
will define a function for each nonterminal in the given
syntax. Each nonterminal describes a derivation tree. The
function has such a tree as parameter and returns a tuple

. In this function we check the semantic context and
make some changes in the program code. These changes
are very important.
The main function is:

where  is a syntactical correct IL0 program. The result
of this function is the tuple

•  - name of the program

•  where

 - program,  - functionblock,  - function,

 - no parents and  - parents

•  - tupel for variables

•  - set of used line labels

•  - the ordered list of

code where  are program statements

After the evaluation of the function  for a given
IL0 program ,  consists of a flat (without proce-
dure- and function calls) IL0 program without parents and
with explicit jump goals (line umbers instead of labels).
All procedure calls and function calls are substituted. All
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labels in jump statements are replaced by the line number
intended from the label before. Parent structures are re-
placed by inserting an new variable, which buffers the ac-
cumulator value before the beginning of the parent
structures. The resulting strictly sequential IL0 program
is correct in respect to its syntax and the corresponding
semantical context.

2.3 Operational Semantics
After scanning and parsing successfully we have a simple
list of commands. Now we can define an operational se-
mantics, which describes the transitions between the pro-
gram states. Such a program state is defined as tupel

, where:
•  is the line number (list index from )

•  a memory state

•  an accumulator where  is the value and

 is the type.
As the basic supposition the evaluation from

, where is a IL0 program, is needed.
Now we define for each command a state transition under

. At this point we like to show some examples:

•

The result of the logical operation AND between the
accumulator value and operand is taken as the new
value of the accumulator.

•

If the accumulator value is TRUE then jump to line
number , otherwise ignore the jump and start with
the execution of the line below.

•

The result of the addition between the accumulator
value and operand is taken as the new value of the
accumulator.

By defining the operational semantics we don’t need any
type check, because this was done by the execution of the
function .
In the forthcoming section we model these elaborated se-
mantics with Petri nets.

3 Petri Net Semantics
In the sections above we talked about the formal defini-
tion of the language IL0. There we defined an operational
semantics as reference semantic, which is now substitut-
ed by a Petri net semantic.

3.1 Syntactical Conventions
In the following section we show Petri nets with some ex-
tensions in the representation. The Petri nets are mod-
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elled hierarchically. But here the hierarchy has only
syntactical nature. We don’t use any semantic composi-
tion. Before analysing these nets, they must be unfolded.
A summary of the syntactical extensions is given in Table
1.
By the way, a new kind of edges is added. The readarc
has a black circle instead of an arrow as a head (see Fig-
ure 2). These kind of edges have always a place as source

and a transition as target. The firing rule is changed in the
way, that no tokens are be removed from the source
place. The places can interpreted as a side condition to the
transition. Under the interleaving semantics for Petri

nets, these arcs can be transformed into two normal arcs
(one for each direction between the place and the transi-
tion).
The presented Petri nets in the sections below are big and
have many repeatitions. Due to this fact we will use the
following conventions, to save space. If a subnet would
be  times repeated, we write the first and the last subnet
only, and mark the repetition with three dots. If the sub-
nets are structurally equal, then we choose intuitive
names for places. An example for this compression is
shown in Figure 3.

logical place -- all logical places with the same
name inflating to the same place after the
unfolding

logical transitions -- like the logical place, but
now for the transitions

subnet -- represents a part of the net, which is
inserted at this position after the unfolding

transition bounded subnet -- subnet where the
bordernodes (nodes with a connection to the
upper net) are only transitions

place bounded subnet -- subnet where the bor-
dernodes (nodes with a connection to the upper
net) are only places

Table 1 Syntactical Petri net extensions

checkedge

Figure 2 Example of a readarc

n

a_7 := b_7

a_0 := b_0

...

a_[0-7] := b_[0-7]

a_[0-7]_0

a_[0-7]_1

a_[0-7]_1

a_[0-7]_0

b_[0-7]_1b_[0-7]_0

Figure 3 Example of repeatition of a subnet

3.2 Binary representation
We are modelling variables and values in a binary form,
where two places are needed to represent a single bit (see
Figure 3). Now we can model algorithms for a binary al-

gebra. This we need to formulate the Petri net semantic
for IL0.

3.3 Petri Net semantics
In this section we will show 3 examples for the Petri net
semantics. As supposition we need (like in the operation-
al semantic) an execution of the function  with the
result in . In analogy to the operational semantic we
have a function  too.
After the execution from the function  we have to
parse only the ordered list of , and for each state-
ment in  we insert a Petri net. The label  is substi-
tuted by the line number, and  is substituted by the name
of the operand. The composition of the subnets (each
command has its own) results in the whole IL-program.
This composition is only sequential.

1

B3 B2 B1 B0

0
Figure 4 Example of a 4-bit number (12 = 1011)
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4 Example: 2-hand Switch
Many production cells focused on safety use such a 2-
hand-switch, which conditioned the use with 2-hands
([DIN EN 574]). The output is on if switch 1 and switch
2 are pressed at the same time (a little delay is possible).
The closers work complimentary to the related openers
(closer 1 to opener 1 and closer 2 to opener 2). The prin-
ciple construct is shown in Figure 5.

A possible coding in an IL0 program is given below:
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Figure 5 structur of a 2-hand-switch

switch 1 switch 2

closer 1 closer 2

opener 1 opener 2O1 O2

S1 S2

1 PROGRAM switch
2 VAR
3 Step_0:BOOL:=TRUE;
4 Step_1, Step_2:BOOL:=FALSE;
5 END_VAR
6 VAR_INPUT
7 S1, S2, O1, O2:BOOL;
8 END_VAR
9 VAR_OUTPUT
10 Output:BOOL:=FALSE;
11 END_VAR
12

13 LD Step_0
14 AND S1
15 AND S2
16 ANDN O1
17 ANDN O2
18 R Step_0
19 S Step_1
20 LD Step_1
21 S Output
22 LD Step_1
23 AND ( O1
24 OR O2
25 ORN S1
26 ORN S2
27 )
28 R Step_1
29 S Step_2
30 LD Step_2
31 R Output
32 LD Step_2
33 ANDN S1
34 ANDN S2
35 AND O1
36 AND O2
37 R Step_2
38 S Step_0
39 END_PROGRAM

4.1 Enviroment Model
First we model the plant. In this example the plant are the
two switches. The model is shown in Figure 6.

In this figure we see a place St1_block. This place is a
blocking place, which prevents the model of the plant to
perform any action until this place is unmarked. This we
need to solve the general requirement on a PLC. During
the runtime of a PLC user program, no changes in the
plant are possible.

St1_switch_off
St1_switch_on

St1_switch_offSt1_switch_on

St1_block

St1_S_off

St1_S_on St1_O_on

St1_O_off

Figure 6 A Petri net model for one switch with blocking
place



4.2 System Program
Each PLC program is included in a PLC system. Such a
system has a system program which transforms the phys-
ical date from the plant into data which can be used by the
program. The system program maps external values in in-
ternal values of variables. The system program is shown
in Figure 7, and the mapping in Figure 8.

In the section below we talk about a blocking place. In
Figure 7 you can see a transition named block. This tran-
sition removes the token from the blocking place. In fact
of this, no transition in the enviroment model has conces-
sion. After the execution of the user program, the transi-
tion named unblock puts tokens back to the blocking
places. Now the enviroment is able to change its state. No
change in the enviroment model is possible, during the
execution of the user program.

4.3 User Program
In section Section 3.3 we said, that we need an execution
of the function  with a specific IL0 program . In
the case of our example this program is our IL-program.
The result of executing  is given in Figure
9. Here you see, that all parent structures are substituted.
Now we translate the result in a Petri net (Figure 10). The
first place of this net is Begin IL an the last is End
IL. The other places are the subnets from the Petri net se-
mantic for the related command. The connection places
(in the Petri net semantic the places labelled with ) are
now labelled with the position of the command in .
Places, except the logical, with the same names, are
merged. As a result of this composition we have a se-
quence of subnets. Each subnet represents a command,
and the position in the sequence represents the position of
this command in the source code. This structure of the net
makes it easy to interpret results from the analysis of the
Petri net in terms of the source code.
The initial marking of the Petri net is also given by the re-

Set Output
Set Input St2_block

St1_block

St1_block

St2_block

unblock

End ILBegin IL

block

Figure 7 System program with plantblocking and
valuemapping

S1_1S1_0

S1_0

St1_S_onSt1_S_off

S1_1
S1_0S1_1

St1_S_on St1_S_off

Figure 8 mapping from external values in internal
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e I L 0 p( )=

i
Code

sult tupel  from . The part  describes the
used variables with types (number of places) and initial
values (marking of this places).

I L 0 switch( )= switch prg n,〈 〉, ,〈{

Step_0 rw bool T,〈 〉, ,〈 〉,{
Step_1 rw bool F,〈 〉, ,〈 〉,
Step_1 rw bool F,〈 〉, ,〈 〉,
S1 r bool F,〈 〉, ,〈 〉,
S2 r bool F,〈 〉, ,〈 〉,
O1 r bool F,〈 〉, ,〈 〉,
O2 r bool F,〈 〉, ,〈 〉,
Ausgang rw bool F,〈 〉, ,〈 〉,
A rw bool F,〈 〉, ,〈 〉,
B rw bool F,〈 〉, ,〈 〉 } ∅, ,
LD Step_0( ) bool,〈 〉 AND S1( ) bool,〈 〉, ,[
AND S2( ) bool,〈 〉 ANDN O1( ) bool,〈 〉, ,
ANDN O2( ) bool,〈 〉 R Step_0( ) bool,〈 〉, ,
S Step_1( ) bool,〈 〉 LD Step_1( ) bool,〈 〉, ,
S Output( ) bool,〈 〉 LD Step_1( ) bool,〈 〉, ,
ST A( ) bool,〈 〉 LD O1( ) bool,〈 〉, ,
OR O1( ) bool,〈 〉 ORN S1( ) bool,〈 〉, ,
ORN S2( ) bool,〈 〉 ST B( ) bool,〈 〉, ,
LD A( ) bool,〈 〉 AND B( ) bool,〈 〉, ,
R Step_1( ) bool,〈 〉 S Step_2( ) bool,〈 〉, ,
LD Step_2( ) bool,〈 〉 R Output( ) bool,〈 〉, ,
LD Step_2( ) bool,〈 〉 ANDN S1( ) bool,〈 〉, ,
ANDN S2( ) bool,〈 〉 AND O1( ) bool,〈 〉, ,
AND O2( ) bool,〈 〉 R Step_2( ) bool,〈 〉, ,
S Step_0( ) bool,〈 〉 ] }

Figure 9 Result of the parsing function
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Figure 10 User program as a Petri net
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4.4 Composition to the System Model
At this point we have a system program as as Petri net and
the user program as a Petri net. Now we have to compose
these two parts, because we need a Petri net for the whole
controller to the analysis. This composition goes over the
places Begin IL and End IL. The result is shown in
Figure 11. The subnets represent the parts of the PLC-

controller.
In the figure we dont have represent the enviroment mod-
el, because it is implicit given in the Petri net of the sys-
tem program. There would be realized the mapping from
the external values to internal values of variables.
The numbers of places and transitions of the whole net is
shown in Table 2.

The Petri net is safe, and live, when dead transition under
the initial marking are removed. Its reachability graph
has 551 states. This net can be used to prove temporal
logic formualae with a modelchecker.

5 Summary and Further work
In this paper we described a method how a PLC control-
ler, whose userprogram is written in IL0, can be translat-
ed into a Petri net. The Petri net has no special elements
with a new semantic. The used elements have only syn-
tactical nature. At this point the Petri net can be analysed
with most of the analysis methods, because it is a safe
place/transition net and the most analysing methods work
fine with this class of Petri nets. The Petri net can be used
as a simulation of a execution of a PLC, too.
In further works we like to implement this transforma-
tion. Also the language IL0 will be extended to the whole
language IL. In the area of analysing, we investigate the

Part Places Transitions

user program 45 126

system program 5 12

enviroment model 8 4

58 142

Table 2 number of places and transitions

user program

End ILBegin IL

system program

Figure 11 connection between system program and
user program

possibilities to formulate the requirements from the
standardisation papers in formulas of temporal logic. Fi-
nally we like to extend this method to multiprocessor and
multitasking systems, where the Petri net based design
and analysis methodology gives its best results.
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