
Int J Adv Manuf Technol (1999) 15:139–152
 1999 Springer-Verlag London Limited

A Case Study in Design and Verification of Manufacturing
System Control Software with Hierarchical Petri Nets

M. Heiner, P. Deussen and J. Spranger
Brandenburg Technical University of Cottbus, Department of Computer Science, Cottbus, Germany

The application of Petri nets is one of the well-known
approaches for developing provably error-free control software
for manufacturing systems. To evaluate the practicability of
available methods and tools for at least medium-sized systems,
a case study has been performed to develop modularised
control software of a production cell with hierarchical Petri
nets, supporting reuse as well as stepwise validation.

Keywords: Concurrent system engineering; Control software;
Hierarchical Petri nets; Manufacturing software; Process model;
Reusable components; Temporal logics; Validation

1. Introduction

The development of provably error-free software-based concur-
rent systems is still a challenge for system engineering. Design
and analysis of concurrent systems by means of Petri nets is
one of the well-known approaches using formal methods. To
evaluate the practicability of available methods and tools for
at least medium-sized systems, stepwise Petri net-based devel-
opment, comprising design and validation, of the control
software of a reactive system – a production cell in a metal-
processing plant [1] – has been carried out.

The main objectives have been to develop modularised
control software, supporting reuse as well as stepwise vali-
dation, taking into account various safety conditions and per-
formance constraints. For that purpose, the hardware/software
interactions also had to be modelled.

Petri net based validation, comprising qualitative as well as
quantitative properties, has been divided into several steps.
First, the context checking (also called general analysis) of
general semantic properties (such as boundedness and liveness)
was managed, basically by “classical” Petri net theory. Sec-
ondly, the verification of well-defined special semantic proper-
ties, progress as well as safety properties, given by a separate

Correspondence and offprint requests to: M. Heiner, Branden-
burg Technical University of Cottbus, Department of Computer
Science, Postbox 101344, D-03013 Cottbus, Germany. E-mail:
mh@informatik.tu-cottbus.de

requirement specification, was performed by model checking
of temporal formulae (referred to as special analysis). Later,
quantitative analysis was started by means of two different
types of time-dependent Petri nets – by duration interval nets
to prove the meeting of given deadlines (worst-case evaluation),
and by stochastic nets to estimate typical performance measures
(such as throughput and processing time). These validation
steps have to be applied repeatedly according to the stepwise
refinement of the system under development. Strong emphasis
has been laid on automation of all the analyses to be carried
out. Finally, the actual control software has been generated
automatically from the Petri net specification, by using a library
of auxiliary procedures necessary for elementary motion steps.

The purpose of this paper is to summarise the main results
gained up to now and to highlight essential problems still to
be solved.

The paper is organised as follows. Section 2 gives a short
overview of the applied Petri net based process model to
develop provable error-free control software of manufacturing
systems and the related tool kit currently in use. Section 3
explains the industrial facility which is the basis of our case
study. Section 4 describes the method of modelling, with hier-
archical Petri nets, using a very small set of reusable Petri net
components. The essential points of qualitative analysis, divided
into general and special analysis, are summarised in Section 5,
while the synthesis of the actual control software is described
in Section 6. Finally, Section 7 summarises lessons learnt and
conclusions regarding the future research direction.

2. Petri Net Based Process Model

Petri nets are used to model and prototype the concurrent
aspects of the system under development, the developer is able
to predict, at the chosen abstraction level, the possible
(qualitative and quantitative) behaviour of the system. After
being satisfied with the analysis result obtained, the program
code (of the communication/synchronisation skeleton), in the
usually given implementation language, can be generated, or
the sequential program parts are added directly to the Petri net
and their execution is driven by the token flow. The implemen-



140 M. Heiner et al.

tation presented in this paper (see Section 6) follows the
second strategy.

The process model applied in this case study can be seen
as an adaptation of the general Petri net based approach to
software validation presented in [2,3,4]. Key ideas are shown
in Fig. 1.

Separate specifications of functional, safety and performance
requirements, which have to be provided by the customer of
the system to be developed.

A recommended order, in which validation methods should be
applied (see Fig. 1) from top to bottom.

The integration of qualitative as well as quantitative analysis
on the basis of a common representation of the system under
development.

The tool kit currently used is as follows. The Petri net EDitor
PED with its hierarchy browser [5] basically supports the
construction of hierarchical place/transition nets. All necessary
attributes (especially time attributes) of those net types can be
assigned to appropriate net elements, which are analysable by
the evaluation tools which are linked:

I PEDVisor allows animation of the functional behaviour by
playing the token game.

I INA (version 1.7) [6] provides an almost complete set of
the (currently) known static and dynamic analysis techniques
of “classical” Petri net theory. Additionally, its analytical
methods of time-dependent (duration and interval) Petri nets
have been applied extensively.

The next tools follow the model checking approach, using
(different versions of) propositional temporal logics as a flexible
query language for asking questions about the
(complete/reduced) set of reachable states. In this way, even
very large state spaces become manageable. However, the state
space has to be finite for that purpose. So, boundedness is
here an unavoidable precondition.

I PROD [7] supportscomputation tree logic(CTL, [8]) as
well as linear time temporal logic(LTL, [9]). The evaluation
of CTL formulae relies on the complete reachability graph.
LTL formulae not containing the nexttime operator can be
checked very efficiently by the construction of a reduced
state space which is in so-calledCFFD-equivalence[10] to
the complete state space using the stubborn set method [11].
PROD provides an on-the-fly verification method based on
this approach.

I PEP [12] offers a promising evaluation method, using a
partial order representation of the system behaviour, for a
restricted type of CTL [13]. Its application is, however,
restricted to 1-bounded nets.

I SMV [14,15] provides a model checking technique for CTL
which is based on a highly compressed representation of
the state space of a system by means ofordered binary
decision diagrams(OBDD’s) [16].

I TimeNet [17] supports the evaluation of generalised stochas-
tic Petri nets by simulation as well as by analysis based on
Markovian processes.

I FUNlite [18] (see Section 6) allows the generation and
(token-driven) processing of executable code.

Information about the results of the analyses are recorded using
several protocols. The type of such information depends on
the analysis method and the tool used. To give a few examples,
in general analysis, for example, dead states or upper bounds
for the number of tokens located at some place (if any) are
recorded by INA in quite lengthy session protocols. Many
model checkers (PROD and SMV, but not PEP) produce an
execution path (sequence of states) in which a property in
consideration is violated, or a trace (transition sequence) to a
state which violates this property, depending on whether LTL
or CTL is provided. Markov solvers such as TimeNet output
mean recurrence timesof states. If Petri nets with non-stochas-
tic time assignments are used, information about execution
paths which obey or violate given time constraints may be
obtained.

The tool kit runs on UNIX with XII/Motif Interface (and
on LINUX – with the exception of TimeNet).

The need to combine a variety of analytical tools stems
from the different features (to raise different questions) or
different analytical methods (to answer similar questions in a
different way) which they provide. Each of these tools has its
strengths and limits. So, they do not compete, but complement
each other. The decision as to which kinds of analytical
methods to use and in which order, and which leads to
results most efficiently, seems to depend generally on the
application area.

3. Task Description

The focus of our investigation is an industrial facility [1].
This production cell comprises six physical components: two
conveyor belts, a rotatable robot equipped with two extendable
arms, an elevating rotary table, a press, and a travelling crane.
The machines are organised in a (closed) pipeline (see Fig. 2).
Their common goal is to transport and transform metal blanks.

The production cycle of each blank is as follows: the feed
belt conveys the blank to an elevating rotary table. The table
rotates and rises to position the blank where the first robot
arm is able to grasp it. The robot fetches the blank from the
table and places it into the press. After it is processed, the
second robot arm places the blank on the deposit belt. A
travelling crane is added to the model to ensure a permanent
supply by transporting the blank back to the feed belt and
making the model self-contained. The devices are now
described in more detail.

Feed Belt and Deposit Belt.Both belts are powered by an
electric motor which can be started or stopped by a control
program. A photoelectric cell installed at the end of each belt
indicates whether a blank has entered the final part of the belt.
In both cases, a blank must leave the photo cell’s control area.
In that position the blank drops from the feed belt onto the
table, while the crane is able to pick up a blank in similar
position from the deposit belt.

1. Elevating Rotary Table.Both vertical movement and rotation
of the table are necessary. The first robot arm is located at a



A Case Study in Design and Verification 141

Fig. 1. Tool overview.



142 M. Heiner et al.

Fig. 2. Top view of the production cell.

different level to the feed belt and is unable to perform a
vertical translation. Furthermore, the arm grippers
(electromagnets) are not rotatable and are not able to place a
blank in an appropriate angle into the press by themselves. An
analog potentiometer indicates the rotation angle of the table.
Boolean valued switches are activated when the table reaches
its top and bottom positions, respectively.

2. Robot.The robot consists of two extendable arms, mounted
orthogonally at different levels, and a swivel for rotation. To
grasp a blank from the table and the press, respectively,
the arms must be extended. In order to meet various safety
requirements, each arm has to be retracted while the robot
rotates or the other arm loads or unloads a blank. The exten-
sions of the robot arms and the rotation angles are indicated
by potentiometers.

3. Press.The press forges metal plates by pressing its lower
plate against the upper plate. Because of the placement of the
robot arms at different horizontal levels, the lower plate of the
press is movable into two other positions: a middle position
for loading by the first arm and a lower position for unloading
by the second arm. In the upper position a blank is forged.
Switches signal the position of the lower plate of the press.

4. Crane. The task of the crane is to transport metal plates
from the deposit belt back to the feed belt to ensure a
permanent supply of blanks without involving any further
external components. Its gripper (an electromagnet) is movable
in the horizontal and vertical directions. After the gripper has
picked up a blank, it lifts, performs a horizontal movement

back to the feed belt, and lowers to release the blank. The
sensor set of the crane comprises switches, which are activated
if the gripper is positioned above one of the belts, and a
potentiometer which indicates the height of the gripper.

Altogether, there are 14 sensors and 34 actuators in the
production cell.

Additionally, various safety requirements are given in [1]
which are to be obeyed by an implementation of the controllers
for the production cell. These requirements are consequences
of restrictions of the machine’s mobility and the danger of
damage caused by the possible collision of several machines.
Another safety requirement is that the controllers have to make
sure that metal blanks are not dropped outside intended areas.
We give two examples:

1. Avoidance of Machine Collisions. For instance, a collision
between the press and the robot is possible. One requirement
is that the press must close only when no robot arm is
positioned inside it.

2. Blanks are not Dropped Outside Safe Areas.For instance,
a metal blank would be dropped if the electromagnet of a
robot arm is deactivated before the device reaches its desig-
nated unloading position.

4. Modelling with Hierarchical Petri Nets

For the description of the control program of the production
cell we use ordinary, hierarchically organised place/transition



A Case Study in Design and Verification 143

nets without extensions such as priorities or place capacities.
Readers not familiar with the basic notions of Petri net theory
are referred, for example, to Peterson [19].

4.1 General Procedure

The control software was developed and analysed stepwise at
two abstraction levels (see Fig. 3) constituting the cooperation
model (see Section 4.2) and the control model (see Section 4.3).

The more abstractcooperation modeldescribes the synchron-
isation of the machine controllers. The construction of the
model was carried out bottom-up in the following way. First,
(three) general reusable patterns concerning the intended com-
munication behaviour of the controllers for the physical devices
were identified and modelled as Petri nets (communicating
state machines) inspired by Casais [20]. These communication
patterns were analysed. Then, the complete model was con-
structed by composition of instances of these communication
patterns via merging so-called communication places.

After having analysed the cooperation model successfully,
refinements (of places as well as of transitions) were made by
modelling the interactions of the controllers with the hardware
interface (actuators, sensors) of the production cell. Further-
more, this control model comprises a Petri net description
of the environment, i.e. the controlled plant. As before, the
construction of the model was carried out bottom-up. A general

Fig. 3. Bottom up design and analysis.

net structure for an elementary control procedure was identified,
which involves the controller part as well as the environment
part, of one basic motion step of any device type. More
complex processing step controls were constructed by combin-
ing elementary ones. After having modelled and analysed the
refined controllers separately, the control model was composed
as described above.

It is worth noting that the whole net has been constructed
systematically using extensively a very small set (seven) of
reusable components. Therefore, similar control applications
can be configured efficiently in a very short time period. The
total net, which can be found in Heiner and Deussen [21],
consists of 231 places and 202 transitions structured into 65
nodes of the hierarchy tree.

4.2 Cooperation Model

The manufacturing system considered consists logically of
seven loosely coupled machine controllers acting largely
independently of each other. These machine controllers are
organised in a (closed) pipeline to realise the
transportation/transformation of the metal plates. For that pur-
pose, neighbouring machine controllers communicate with each
other according to a synchronous producer/consumer relation-
ship. There is neither a central controller of the production
cell responsible for activating and deactivating the machines,



144 M. Heiner et al.

nor a global observer with full knowledge of the total state of
the production cell and of the metal plates.

Each machine follows a similar operation pattern: fetch a
metal blank from the input region, process it, and deposit the
plate on the output region. In order to do that, each machine
performs cyclically a certain sequence of motions (synchronised
according to the states of its neighbours).

If two machines are connected, the output region of the
predecessor, and the input region of the successor, merge to a
cooperation region between two consecutive machines. Such a
cooperation region has to be organised as a mutual exclusion
region, i.e. either the predecessor is allowed to put a plate into
the region, or the successor has the access rights to take a
plate from the region. However, the concurrent access to the
cooperation region by the adjacent machines is forbidden.

Furthermore, owing to the given machine equipment, a
cooperation region does not have any buffering capabilities.
So the predecessor is allowed to put a plate into the region,
only if the region is free, and the successor can take a plate
from the region, only if it is full. Figure 4 shows the elementary
relationship of each controller to the controllers of neighbouring
machines. The input and output regions of the controller are
modelled by the four grey-shaded places. According to the
mutual exclusion requirement for the cooperative regions of
consecutive machines, each controller has to make sure that at
most one token is placed at both of its input region places,
and analogously, at most one token is placed at both its output
region places. Additionally, there are two kinds of mutually
exclusive shared resources.

The robot arms are organised separately to enlarge the
possible degree of parallelism within the production cell (which
may possibly result in a higher throughput). In doing so, the
robot swivel (the engine to rotate both arms), becomes a shared
resource of the arms, which can be used only exclusively.

There exist shared physical regions (intersection of trajector-
ies of different machines). To avoid machine collisions, such
shared physical regions have to be used exclusively. In our
case study, the trouble disappears in a constructive way, by
the ad hoc requirements that the robot arms and the crane are
allowed to move only if they are retracted and lifted,
respectively.

Let us have a closer look into the controllers. There are
three basic types of communication pattern according to the
order in which input and output regions are acquired and
released (see Fig. 5). (Please note the following drawing con-
vention. Grey-shaded nodes are so-calledfusion nodes. They
serve as connectors: all fusion nodes with the same name are

Fig. 4. Producer consumer relation.

logically identical. Therefore, they will be merged physically
for the analysis data structures. Usually, communication objects
are represented by such fusion nodes to avoid immoderate
edge crossing.)

1. Independent input/output. For the next operation cycle, the
controller has to synchronise with only one of its adjacent
controllers, e.g. to take a plate from the input area, a free
output area is not required and vice versa. This pattern is
applied to the arms and the crane.

2. Dependent input/output.For the next operation cycle, the
controller needs simultaneous control of input and output
regions. This pattern is very useful to control the belts in
such a way that the plates remain distinguishable. A belt
is switched on only if a new plate has arrived (input
available) and the output area is free. So at any time, a
maximum of two plates can be on the belt – one at each
end of the belt.

3. Mutually exclusive input/output.At any time, the controller
must hold a lock on one of its cooperation regions, i.e. the
output region can only be released after having locked the
input region and vice versa. This pattern is used for
machines such as the table and the press, which cannot be
in a position suitable for loading as well as unloading at
the same time.

Now let us consider the arms in more detail. First, they
follow the independent input/output cooperation pattern. Sec-
ondly, both arms have to be synchronised in order to use the
swivel only in a mutual exclusive manner. These two basic
synchronisation patterns have to be combined in an interleav-
ing way.

Three possible arm versions are shown in Fig. 6. In version 1,
the preconditions to start a motion step are acquired simul-
taneously. To implement this behaviour, corresponding compact
language primitives are required which are usually not available
in implementation languages. Alternatively, arm version 2 and
3 correspond in a straightforward manner to the program
sketches in Fig. 7 [20].

The control system of the production cell is composed of
the machine components just introduced. The coarse structure
given in Fig. 8 provides an overview of the whole (closed)
system. It shows the top level of a hierarchically structured
Petri net which is the result of the linking step. During linking,
all (private) nodes of one controller are uniquely prefixed to
preserve node name uniqueness within the total system. Each
of the macro transitions (represented as nested double boxes)
includes the behaviour of one controller on the next lower
level (i.e. the net structures of Figs 5 and 6, but with prefixed
node names).

4.3 Control Model

In order to be able to express safety requirements referring to
physical devices, the controllers’ net models have to be
extended by a net description of the environment reflecting all
essential assumptions about its behaviour.

The environment model for each physical device is divided
into two parts: anactuator model, which describes the possible



A Case Study in Design and Verification 145

Fig. 5.Three types of communication pattern.

Fig. 6.Three arm versions.

Fig. 7.Source test examples [20].

states of a device and asensor model, which expresses the sensor
values which must be received by the controller (see Fig. 9).

Actuators (e.g. the press’ engine) are effected by commands
(e.g. pressupward, pressstop, pressdown). We can identify
the states of each device with the commands to control them
(so for the press, there exist three possible states). A net
description of the actuator states is obtained by adding a place
PA for each commandA. A marking of PA with one token
means that the corresponding device has received the command
A and is in an associated state.



146 M. Heiner et al.

Fig. 8. Coarse structure of the closed system.

A controller performs actions in response to specific
(discrete) sensor values. To construct an environment model,
when describing the relations between sensors and actuators,
it is enough to represent in the model, only those finite discrete
sensor values, out of the whole set of generally analogous
values, which may cause a reaction of controllers (e.g.
pressat lower pos, pressat middle pos, pressat upper pos).
A net description of the relevant sensor states of the production
cell is obtained by adding a placePV for each of these values
V. PV is marked with one token if the valueV is received by
the control program.

Let us now discuss in more detail the model of the control-
ler’s interactions with the environment. Every complex control
action is decomposed into elementary motion steps (like
press forge, presslift, etc.). One such step consists of device
activation (start command), waiting for a certain sensor
value indicating that the motion has been completed
(wait stop con(dition)), and device deactivation (stopcommand)
(see the lefthand side of Fig. 9(a)).

A start command will force the associated device to change
from an inactive to an active state. A stop command is assumed
to force the device to change to an inactive state. The net in
Fig. 9(a) (righthand side) (actuator state model) shows the
modelling of these assumptions. The places stopcommand
and start command represent the actuator states corresponding
to the deactivation and activation of the actuator, respectively.

Each elementary motion step is performed in the context of
an initial sensor value indicating the current position of the
corresponding device. It is assumed that the performed motion
will eventually cause the occurrence of a certain final sensor
value. The places startcon(dition) and stopcon(dition) rep-
resent the initial and final values of the sensor state model.
The transition css (change sensor state) implements this
assumption (see Fig. 9(a) righthand side, sensor state model).

To increase readability, control procedure and environment
descriptions are abstracted by a macro component (coarse node
with interface places), as shown in Fig. 9(c). Instantiating the
macro net involves renaming of formal parameter places by

Fig. 9.Petri net component of basic motion step and environment
(from top to bottom). (a) Basic models. (b) Composition of the 3
models in Fig. 9(a). (c) Macro component of Fig. 9(b) (with formal
parameters).

actual parameters. The total net comprises 37 instances of this
basic macro, forming the sheets of the hierarchy tree.

5. Qualitative Analysis

Owing to the lack of applicable compositional Petri net analysis
approaches, all analytical results have to be confirmed after
each refinement/composition step. However, it is a widely
accepted engineers’ basic principle that a sound composition/
refinement has to be based on sound components. So, the
successful analysis of a given model at a certain abstraction
level is considered to be a necessary (but unfortunately not
sufficient) condition to go ahead in modelling. In this way,
design faults can be detected early.



A Case Study in Design and Verification 147

5.1 General Analysis

For the cooperation model, general analysis was carried out
successfully using INA. Boundedness and liveness could be
decided efficiently (i.e. without construction of the complete
reachability graph) by showing that the net is covered by
semipositive place invariants and by proving the deadlock trap
property (in connection with the net structure Extended
Simple), respectively. Dead states caused by one controller
version (arm version 2) have been found very fast by construc-
tion of the (surprisingly small) stubborn set reduced reachability
graph. Table 1 summarises some of the steps carried out for
the analysis of the cooperation model.

For comparison, we also tried to apply OBDD-based
methods. OBDDs represent the set of reachable states of a
system by its characteristic function, that is a Boolean function
in the number of variables necessary to describe a system
state. The efficiency of OBDD based methods depends critically
on the ordering in which these variables occur. Table 2 collects
some execution times and storage uses measured in the number
of OBDD nodes necessary to represent the states spaces to
decide the liveness of the considered subsystems of the
cooperation model. Note the effect of using a formerly com-
puted variable ordering.

Table 1.Size of analysed nets and analysis efforts using INA and PROD (cooperation model).

Subsystem Places/transitions Analysis (INA) Execution times (s)

DTPa Rstub
b Rc INAd INAe PRODf

Controllers

Table/press
with init part 13/9 – 12 28 1.5 1.54 7.96
without init part 12/8 28 8 24 1.46 2.16 7.41

Crane 12/8 31 11 48 1.62 2.12 7.39

Arm
version 1 13/8 38 11 48 1.5 3.12 14.78
version 2 17/12 109 15 112 1.73 1.65 24.92
version 3 17/12 88 15 96 1.77 1.88 24.19

Belts 12/8 26 8 36 1.58 2.23 7.38

Composed systems

Robot (arm version 3) 33/24 448 221 6912 2190.18 11.34 75.6

Robot/press with
arm version 1 25/16 175 47 640 7.81 3.64 14.78
arm version 2 33/24 3.851 75 1984 53.23 7.78 24.92
arm version 3 33/24 725 140 1800 57.07 8.12 24.19

Open system 51/36 1145 299 77 760 86 132.6 3653.6 1073.35

Closed system 51/36 1140
with 1 plate 36 864 18.58 6.07 25.93
with 2 plates 72 4776 365.53 18.77 56.21
with 3 plates 94 12 102 2401.28 87.1 125.71
with 4 plates 98 16 362 4167.93 150.85 169.15
with 5 plates 121 12 144 2373.1 78.6 123.8

aProcessed candidates to check the deadlock trap property.
bNumber of states of the stubborn reduced reachability graphRstub.
cNumber of states of the complete reachability graphR.
dTime effort to generateR (with coverability test).
eTime effort to generateR (without coverability test).
fTime effort to generateR.

For the control model, boundedness can still be decided
very quickly by showing that the net is covered with semiposi-
tive place invariants. Owing to the added environment behav-
iour, all net models exhibit a net structure beyond the Extended
Simple one. So, the deadlock trap property could only show
the freedom of dead states. However, this can be proved more
efficiently by constructing the stubborn set reduced reachability
graph (even for the completely refined open system with a
still unknown state space size).

Because of the very large size of the state space of the
control model, the time and space effort to generate the
complete reachability graph (to prove, for example, liveness)
became unmanageable.

Like many other “classical” net properties, the liveness
property can also be expressed by a set of CTL formulae (one
for each transition, see next section). However, because their
evaluation relies on the complete reachability graph, PROD’s
CTL model checking component (which is based merely on
graph traversing strategies and evaluation of state expressions)
is not applicable in the case of the control model.

The evaluation of an LTL formula may be based on a
stubborn set reduced reachability graph, resulting generally in
much smaller sets of reachable states. However, in LTL, only
a stronger liveness property of transitions can be expressed,



148 M. Heiner et al.

Table 2.Analysis of the model using SMV (cooperation model).

Without reordering Computation of reordering With reordering

Time BDD nodes Time BDD nodes Time BDD nodes
Subsystem (s) (s) (s)

Controllers

Belt 0.10 3962 0.12 2762 0.04 3723

Table/press 0.09 2902 0.14 2149 0.12 2656

Crane 0.12 4075 0.16 2643 0.11 3555

Arm
version 1 0.13 4270 0.18 2837 0.12 3720
version 2 0.22 10017 0.29 5073 0.18 9806
version 3 0.23 9735 0.35 5015 0.21 8816

Composed systems

Robot (arm version 3) 21.93 41685 1.00 7671 6.76 11829

Robot/press with
arm version 1 1.88 10292 3.14 5799 1.08 10093
arm version 2 11.02 11231 9.59 6378 8.93 10680
arm version 3 13.38 15618 10.14 7012 6.10 10365

Open system 343.19 103319 205.03 31506 99.80 44732

Closed system
with 1 plate 36.29 48984 22.39 8357 13.58 11163
with 2 plates 77.14 59467 57.40 12041 23.48 17662
with 3 plates 144.89 94818 69.00 16847 37.10 27101
with 4 plates 182.46 108414 75.38 20292 54.06 40188
with 5 plates 275.53 180507 49.90 14906 30.41 12144

which is more related to the livelock freedom of transitions.
On every infinite computation path, a transition is enabled
infinitely often. Every strongly live transition is also live. This
formula was checked for every transition in the control model
using a batch program. However, the formula does not hold
for all transitions in the control model (as expected, any actions
in alternative execution branches are not strongly live). For
these remaining transitions we succeeded in proving liveness
using the model checker of the PEP tool (see next section for
a comparison of the expressive power of the temporal logics
supported by the different tools). The analysis steps concerning
the control model are summarised in Table 3.

There are some success stories about OBDD based
methods in the literature (for SMV, see e.g. [22] or [23]).
However, the SMV system proved to be inapplicable for the
validation of the control model. We were only able to
generate the OBDD representation of the state space of very
small system components comprising only one controller.
For instance, even the analysis of a system comprising the
two robot arm controllers (just 63 232 states) was stopped
after several hours run time and the construction of only a
few hundred states. However, it should be noticed that SMV
is not designed for the analysis of Petri net models. Although
the structure and dynamic of Petri nets can be expressed in
SMV’s input language, an implementation of an OBDD-
based model checker, dedicated especially to Petri nets,
might produce much better results.

5.2 Special Analysis

To highlight the difference between the applied tools concern-
ing their expressiveness, it is useful to summarise typical
questions/properties dealt with during special analysis. In the
following formulation, w denotes a general logical expression
characterising usually a (wanted or unwanted) state or set
of states.

1. Reachability-related (reachability of a state wherew holds):

EFw

(There exists at least one computation path (future behaviour)
to reach eventually a state wherew will be true.)

2. Safety-related (unreachability of a state wherew holds):

AG (Gw), (equivalent toGEFw)

(For every computation path,w will never be true.)
3. Invariant-related (general validity of an assertionw):

AG w, (equivalent toGEF (Gw))

(For every computation path,w will be true for ever.)
4. Liveness-related:

AG EFw

(Whatever happens, there exists the chance (at least one path)
that w will be true.)



A Case Study in Design and Verification 149

Table 3.Size of analysed nets and analysis efforts using PEP and PROD (control model).

Subsystem Places/transitions PEP PROD

Conditions/ Timeb Rc Timed Rstub
e Timef Rstub

g Timeh

eventsa (s) (s) (s) (s)

Controllers

Crane 45/34 14/71 0.02 256 0.78s 51 0.16 38 0.08

Feed belt 22/16 69/34 0.01 69 0.20s 31 0.10 16 0.07

Table 32/24 82/37 0.01 88 0.38s 36 0.15 24 0.09

Arm (version 3) 66/60 138/65 0.02 365 1.19s 62 0.23 51 0.09

Press 28/20 166/81 0.02 140 0.42s 48 0.10 20 0.09

Deposit belt 22/16 69/34 0.01 69 0.20s 31 0.11 16 0.07

Composed systems

Robot 124/120 3514/1752 0.02 63 232 11.26s 992 5.99 205 0.21

Robot/press 140/132 1280/624 1.07 18 344 3.10s 557 3.46 305 0.35

Open system 198/176 2773/1348 5.15 ? ? 798 5.90 507 0.62

Closed system 231/202
with 1 plate 690/316 0.57 30 952 7.54 162 0.68 163 0.32
with 2 plates 1670/792 2.63 543 480 Ca. 3.3 h 406 2.53 456 0.72
with 3 plates 2009/960 3.02 >1.7 Mio >20 h 523 4.51 635 0.95
with 4 plates 2164/1035 3.38 >3.1 Mio >42 h 471 4.02 678 1.06
with 5 plates 1619/768 1.68 1 657 242 ca. 14 h 585 5.05 608 0.98

aSize of the finite prefix of the branching process (net unfolding).
bTime effort to generate the finite prefix.
cNumber of states of the complete reachability graphR.
dTime effort to generateR.
eNumber of states of the stubborn reduced reachability graphRstub using thedeletion algorithm.
f Time effort to generateRstub.
gNumber of states of the stubborn reduced reachability graphRstub using theincremental algorithm.
hTime effort to generateRstub.

5. Progress-related:

AG AF w

(For every computation path,w will eventually be true.)

Which tools may be applied at all for a given type of question
depends on the temporal logic it provides. Table 4 gives a
comparison of the model checkers in use and the versions of
logics provided. Which tools should be applied in which order
depends on the analytical methods they are based on.

The analyses of PEP are based on a so-called finite prefix
of a branching process [13,24,25]. In the case of concurrent

Table 4.Comparison of tools and supported temporal logics.

Tool Supported type of logic temporal Operators Type of properties
expressible

INA – EF w (but w can only be given by a (sub-) marking) (1), (2)
(version 1.7)

PEP (restricted) CTL AG, EF (1)–(4)

PROD LTL (without next-time operator) G, F, U (unquantorized versions ofAG, AF, AU) (2), (3), (5)

PROD (full) CTL EX/AX , EU/AU, (1)–(5)
SMV EF/AF, EG/AG

systems with a moderate amount of non-determinism, these
graphs are much smaller than the “classical” complete reach-
ability graphs because they alleviate the state explosion by
avoiding the enumeration of all interleaving combinations for
independently concurrent actions.

PROD uses stubborn set reduced reachability graphs, which
are generally, in the case of highly concurrent systems, much
smaller than the complete reachability graph. Such a reduced
(very small) graph is newly constructed for each LTL question.

We succeeded in constructing stubborn set reduced versions
of the reachability graph as well as of the finite prefix of
branching processes, even for systems for which total system
state size is still not known.



150 M. Heiner et al.

Because the evaluation of PROD’s CTL relies on the com-
plete reachability graph, its application should be tried only if
the formerly mentioned methods did not help. In our experi-
ence, the same seems to be true for SMV.

This helpful meta-knowledge of the tool’s internal analysis
techniques should be provided to the tool box users, e.g. by a
dialogue-oriented user guideline of the Petri net framework
implementation (see Fig. 1).

Altogether, about 25 different requirements of the
cooperation model expressed by CTL and of the control model
expressed by LTL have been proved successfully. The follow-
ing examples demonstrate the variety:

1. Reachability-related, e.g.: To gain deeper insight into the
controllers’ concurrency:Is it possible that both robot arms
hold a plate at the same time?

EF (arm1magon ` arm2magon)

2. Safety-related, e.g. those properties mentioned in Section 3.
In particular: The press may only be closed, if no robot
arm is positioned inside it, i.e. for arm 1:

G ((arm1releaseangle` arm1releaseext)

→ (pressstop` ⇁pressat upperpos))

If arm 1 is loaded (its magnet is activated), it remains loaded
until it reaches its unloading position.

G ((arm1pick up angle` arm1pick up ext`
arm1magon)

→(arm1magon U (arm1releaseangle`
arm1releaseext)))

Note that the until operatorU is required to express this
property.

3. Invariant-related, to prove design consistency, e.g.The press
is either stopped or moves in exactly one direction, i.e. it
is always in one of its actuator states:

G (pressstop~· pressupward~· pressdown)

(~· denotes exclusive disjunction.)
The press is always positioned (logically) at exactly one of its
sensor states:

G (pressat lower pos~· pressat middlepos~·

pressat upperpos)

4. Liveness-related, e.g.a Petri net transition t is liveiff it
may be enabled infinitely often:

AG EF `
pPOt

p̃

(A transition t of an ordinary Petri net is enabled (may fire)
if all its preplaces hold a token (herep̃ denotes the interpret-
ation of a place name as an atomic proposition:p̃ holds true
if p is marked with one token at a state where the proposition
is evaluated. As usual,Ix denotes the set of predecessor nodes
of a net elementx (place or transition), andxI stands for the

set of its successor nodes. An analogous notation applies to
sets of net elements).

5. Progress-related, e.g.a transition t is strongly liveiff it will
be enabled infinitely often:

AG AF `
pPOt

p̃

The necessary analytical efforts for model checking of these
requirements may be summarised in the following way.
PROD’s stubborn set based evaluation method of LTL formulae
has been proven applicable even for medium-sized systems.
(The sizes of the stubborn set reduced reachability graphs
constructed to evaluate formulae like those given above have
been between 500 and 30 000. The time efforts were between
2 and 25 min on a SPARC Station 20.) However, liveness-
related properties cannot be expressed in LTL because of the
lack of quantification for computation paths. On the other
hand, PROD’s model checker for full CTL formulae is not
applicable for the control model because it depends on the
complete construction of its state space. Surprisingly good
results are gained by using PEP’s model-checking algorithm
for the verification of liveness-related, as well as safety-related,
properties. (Liveness of transitions, for instance, can be checked
in an insignificant amount of time (0.04 s). Similar results are
obtained for simple safety formulae of type 2 (see above). The
finite prefix of the control model consists of 1619 conditions
and 768 events, constructed in less than 0.1 s on a SPARC
Station 20.) Therefore, the model-checking techniques provided
by PEP and PROD seems to be a suitable combination in the
context of our application area.

6. Synthesis

In order to avoid any additional implementation faults, the
actual control software has been directly synthesised from the
Petri net specification in the following way: for the simulation
(animation by playing the token game) of the Petri net, a very
small Petri net simulator (FUNlite) has been realised, designed
especially for the fast execution speed and low memory con-
sumption. (The source code of the FUNlite execution kernel
has a size of 50 lines (including comments) which results in
5 kB of object code on a SPARC Station 20.) FUNlite is
currently restricted to 1-bounded Place/Transition nets, but
could be easily extended to bounded Place/Transition nets (as
long as the capacities of the places are known). When simulat-
ing a Petri net, by playing the token game, the speed of the
transition enabling test plays an important role. In FUNlite the
enabling test is highly simplified by a method characterising
the enabling of a transition at a given marking by a simple
number comparison.

For each transition a counter is introduced which character-
ises the firability of that transition. The counter of a transition
t shows the number of unmarked preplaces oft. If the counter
of a transition t decreases to 0 the transition gets enabled.
After the firing of a transitiont, we have only to consider the
transitions sets (It)I and (tI)I. For each transitiont9 in (It)I,
the counter of t9 is increased by the number of common
preplaces with transitiont. For each transitiont′ in (tI)I, the



A Case Study in Design and Verification 151

counter of t′ is decreased by the number of common places
between the preplaces oft9 and the postplaces oft. For more
information about extending this method to structurally
bounded Place/Transition nets, see [26].

Based on the FUNlite Petri net simulator, a FUNlite descrip-
tion of the total net structure and a C-procedure skeleton for
each transition was automatically generated. There are 37 basic
macro transitions, containing the elementary motion steps. For
the three transitions of all these basic macros (startcommand,
wait stop con, stop command, see Fig. 9(b)) the correspond-
ing procedure skeleton had to be filled with the actual elemen-
tary motion code. The remaining transitions simply play the
token game. The assignment of all these procedures to the
corresponding transitions is handled by name equivalence. The
procedures are executed if the corresponding transition fires.
All elementary motion code declarations are local to their C-
procedure skeletons. This prevents destruction of the well-
analysed net behaviour. Therefore, any (implicit) communi-
cation between these procedures has been made impossible.

The generated control software runs in a graphical simulation
environment of the production cell implemented with Tcl/Tk
on UNIX computers. The communication between the control
software and the simulation environment follows a simple
ASCII-based input/output protocol. Therefore, the elementary
motion code consists of simple I/O statements. The example
in Fig. 10 illustrates the syntactical structure of an elementary
motion step procedure (corresponding to the startcommand
of the basic macro transition to extend arm 1 from the retract
position to the pick-up position). There are two parts. One
part represents the automatically generated procedure skeleton
(plain), and the other one contains the included elementary
motion code (bold).

The control software was compiled for two different machine
types, for SUN workstations and for a T9000 based distributed
multiprocessor architecture. In the later version, each controller
runs on its own processor. As a welcome (but not surprising)
confirmation of our general approach, both versions run, after
successful compilation, right from the beginning without
any trouble.

7. Conclusions

To date, a Petri net model to control the given production cell
has been developed which enjoys provably a lot of valuable
qualitative properties – general as well as special ones. The
following investigations are in progress:

Fig. 10.FUNLite transition code.

Worst-case evaluation by duration interval nets introduced in
[27] (firing of transitions consumes time characterised by inter-
val delays) to prove the meeting of given deadlines
(implemented in the latest update of INA).
Quantitative analysis of stochastic nets [28] for performance
and reliability evaluation.
Incorporation of fault tolerance aspects (blowing up the net
sizes significantly).

Throughout this paper, (the rarely available and rather
restrictive) compositional approaches of Petri net analysis have
not been discussed. They have been omitted in order to concen-
trate on the borders of those net/state space sizes, which are
manageable by available analysis tools.

Finally, the main lessons learnt concerning a suitable tool
box framework are the following:

The combination of different tools (even if they provide similar
features at the first glance) seems to be unavoidable.
User guidelines showing which analysis techniques are to be
recommended for a given analysis question are needed.
The check of a given system against its functional and/or
safety requirements given by a (more or less large) set of
temporal formulae calls for distributed evaluations in batch
processing operation mode.

Acknowledgements

We are grateful to Claus Lewerentz for drawing our attention
to the production cell case study. We thank Peter H. Starke,
Bernd Grahlmann, Kimmo Varpaaniemi, and especially Guido
Wimmel for their assistance in using their tools.

References

1. C. Lewerentz and T. Lindner, Formal Development of Reactive
Systems – Case Study Production, Lecture Notes in Computer
Science, 891, Springer, 1995.

2. M. Heiner, Petri Net Based Software Validation, Prospects and
Limitations, ICSI-TR-92-022, Berkeley/CA, 1992.

3. M. Heiner, “Petri net based software dependability engineering”,
Tutorial Notes, International Symposium on Software Reliability
Engineering (ISSRE ’95), Toulouse, October 1995.

4. M. Heiner, G. Ventre and D. Wikarski, “A Petri net based
methodology to integrate qualitative and quantitative analysis”,
Journal of Information and Software Technology, 36(7), pp. 435–
441, 1994.

5. “PED – a hierarchical Petri net editor ”, http://www-dssz.
Informatik.TU-Cottbus.DE/~wwwdssz

6. H. P. Starke, INA – Integrated Net Analyser, Manual (in German),
Berlin 1992 (see also http://www.informatik.hu-berlin.de/~starke/
ina.html).

7. K. Varpaaniemi, J. Halme, K. Hiekkanen and T. Pyssyslao, PROD
Reference Manual, Helsinki University of Technology, Digital
Systems Laboratory, Series B: Technical Report no. 13, Espoo
1995 (available at http://saturn.hut.fi/~petrinet/publications.html).

8. M. Ben-Ari, M. A. Pnueli and Z. Manna, “The temporal logic of
branching time”, Acta Informatica, 20, pp. 207–226, 1983.

9. E. A. Emerson, “Temporal and modal logic”, in: J. van Leeuwen
(ed.), Handbook of Theoretical Computer Science, vol. B, Elsevier,
Amsterdam, pp. 995–1072, 1990.

10. A. Valmari, “Alleviating state explosion during verification of
behavioral equivalence”, University of Helsinki, Department of



152 M. Heiner et al.

Computer Science, Report A-1992-4, Helsinki 1992 (available at
http://saturn.hut.fi/~petrinet/publications.html).

11. A. Valmari, “A stubborn attack on state explosion”, Formal
Methods in System Design, 1(4), pp. 297–322, 1992.

12. E. Best and B. Grahlmann, PEP – Programming Environment
Based on Petri Nets, Documentation and User Guide, University
of Hildesheim, Department of Computer Science, November 1995
(available at http://www.informatik.uni-hildesheim.de/~pep).

13. J. Esparza, “Model checking using net unfoldings”, Science of
Computer Programming, 23, pp. 151–195, 1994.

14. K. L. McMillan, The SMV System, Technical Report, Carnegie-
Mellon University 1992 (available at http://www.cs.cmu.edu/
~modelcheck/smv.html).

15. K. L. McMillan, Symbolic Model Checking, Kluwer, 1996.
16. R. E. Briant, “Graph-based algorithms for Boolean function

manipulation”, IEEE Transactions on Computers, C–35(8),
pp. 677–691, 1986.

17. R. German et al., TimeNet – A Tool Kit for Evaluating Non-
Markovian Stochastic Petri Nets, Technical University of Berlin,
Department of Computer Science, Report 1994-19 (see also:
http://pdv.cs.tu-berlin.de/forschung/timenet.html).

18. J. Spranger, “FUNLite – A parallel Petri net simulator”, Proceed-
ings 42nd IWK, Technical University Ilmenau, pp. 563–568, 1997.

19. J. L. Peterson, Petri Net Theory and the Modeling of Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

20. E. Casais, “Eiffel: A reusable framework for production cells
developed with an object-oriented programming language”, in C.
Lewerentz and T. Lindner (ed.), Case Study “Production Cell”

A Comparative Study in Formal Software Development, FZI-
Publication 1/94, Forschungszentrum Informatik, Karlsruhe,
pp. 241–256, 1994.

21. M. Heiner and P. Deussen, Petri Net Based Qualitative Analysis –
A Case Study, Brandenburg Technical University of Cottbus,
Department of Computer Science, Technical Report I-08/1995
(available at http://www-dssz.Informatik.TU-Cottbus.DE/~wwwdssz).

22. J. C. Corbett, Evaluating Deadlock Detection Methods, Technical
Report, University of Hawaii at Manoa, 1994.

23. S. T. Probst, Chemical Process Safety and Operability Analysis
Using Symbolic Model Checking, PhD Thesis, Carnegie Mellon
University, Department of Chemical Engineering, 1996.

24. J. Engelfriet, “Branching processes of Petri nets”, Acta Informat-
ica, 25, pp. 575–591, 1991.

25. K. L. McMillan, “Using unfoldings to avoid the state explosion
problem in the verification of asynchronous circuits”, Proceedings,
4th Workshop on Computer Aided Verification, Montreal, pp. 164–
174, 1992.

26. J. L. Briz and J. M. Colom, “Implementation of weighted
place/transition nets based on linear enabling functions”, Lecture
Notes in Computer Science, 815, Springer, pp. 99–118, 1994.

27. M. Heiner and L. Popova-Zeugmann, “Worst-case analysis of
concurrent systems with duration interval Petri nets”, in E. Schni-
eder and D. Abel (eds.), Proceedings 5th EKA ’97, Braunschweig,
pp. 162–179, 1997.

28. D. Wikarski and H. Heiner, On the Application of Markovian
Object Nets to Integrated Qualitative and Quantitative Software
Analysis, Fraunhofer ISST, Berlin, ISST-Berichte 29/95, 1995.


