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Abstract. We show how to combine the specification notation Z with Petri nets
for modeling safety-critical systems. The combination preserves the strengths of
the two formalisms, while ameliorating their drawbacks. We illustrate our ap-
proach by modeling a part of a production cell and validating that model with
respect to safety-related properties.

1 Introduction

Petri nets [Sta90] are a well-established formalism for modeling the behavior of con-
current systems. They have a formal semantics and can be animated by tools. More-
over, there exist sophisticated analysis techniques to demonstrate properties of Petri net
models. Animation and validation are particularly important for safety-critical systems,
making Petri nets a suitable formalism to use in that area.

A drawback of Petri nets is that they tend to become very large for systems of
realistic size. Taking into account not only behavioral but also data-related aspects of the
modeled system further increases the size of the Petri net. Data-oriented aspects concern
the internal data that the system must maintain to adequately react to environmental
or internal conditions. Safety-critical systems (like other computerized systems, too)
usually need such an internal data state.

In contrast to Petri nets, the specification notation Z [Spi92b] was designed to spec-
ify data and the evolution of data. It does not provide any means to explicitly specify
behavior. In Z, we can only specify sets of operations, but we cannot express that we
want to occur the operations in a certain order. As compared to other formal specifi-
cation languages, Z is fairly well-accepted and well equipped with tools, such as type
checkers [Spi92a,BGHH98] and theorem provers [KSW96,Saa97].

To adequately specify safety-critical systems, both aspects, behavioral as well as
data-oriented ones, must be taken into account. Therefore, we investigate a combina-
tion of Z and Petri nets. We use Z to specify the data-oriented aspects of the system, and
Petri nets to specify its behavioral aspects. Combining the two languages, we achieve
a separation of concerns, which results in better comprehensible, smaller and thus bet-
ter analyzable system models. Hence, the combination keeps the advantages of both
specification formalisms, while ameliorating their drawbacks.

In Section 2, we describe the way in which systems are modeled, using the two
formalisms. Section 3 is devoted to a case study that illustrates the approach and shows
how combined specifications can be validated. We conclude by comparing our combi-
nation of Z and Petri nets with other combinations of data-based and behavioral speci-
fication formalisms and by pointing out directions for future research (Section 4).
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2 Modeling Principles

A goal of our combination of Z and Petri nets is to obtain nets that are much smaller
and better analyzable than when using Petri nets alone to model a safety-critical system.
When using the combination, data aspects need not be encoded in the nets, but can be
specified in Z.

We define the system state and operations that specify how that state can evolve in
Z. In Z, it cannot directly be expressed in which order the Z operations should “hap-
pen” (indeed, there is not even a notion of executing an operation in Z). To express
behavior, we use Petri nets, where Z operations correspond to transitions of the Petri
net. Moreover, we assume that Z operations can only be “executed” if their precondi-
tion is fulfilled. The precondition of an operation states that there exists an after-state
and values for the output variables such that the schema predicate is fulfilled. In this
paper, we always give the preconditions explicitly. The following figure illustrates this
approach:
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The model of a safety-critical system is then made up of both specifications, i.e., the
conjunctionof the constraints imposed by the two specifications must be fulfilled. To
obtain a useful system model by combining specifications in different formalisms, we
must show that the two specifications do not contradict each other. To ensure compati-
bility of the two specifications, we have identified several proof obligations. Checking
these compatibility conditions may reveal errors in the model and thus contributes to
the quality of the specification.

– The initial marking of the Petri net must be consistent with the initiality conditions
of the Z specification.

– The conditions associated with incoming places of transitions correspond to pre-
conditions of Z operations, the conditions associated with outgoing places of tran-
sitions correspond to postconditions established by Z operations. Hence, for chains
we have the obligation to show that the postcondition of an operation implies the
precondition of its successor in the chain.

– If the Petri net admits concurrent execution of operations! " � and ! " � that work on
common state components, we must show that

$ the operations do not exclude each other, i.e.,% & ( * + ! " � - ( * + ! " � 0 2 4 6 7 9 ;
$ for all states where( * + ! " � - ( * + ! " � holds, both orders are possible and lead

to the same final state. This allows us to use an interleaving semantics of con-
currency for Z operations.

Usually, a transition is enabled if the precondition of its corresponding Z operation
holds. But to keep the Petri net sizes small by concentrating on the essential control
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flow, the precondition of a transition may be weaker than the precondition of its Z
operation. To highlight this fact, the letter “Z” appears in the transition symbol (see
Figure 2). Z-labeled transitions, if considered only on the Petri net level, exhibit more
behavior than allowed by the Z specification. This mechanism may be used to resolve
dynamic conflicts in the combined Z - Petri net specification. If two transitions are in a
dynamic conflict, whose corresponding Z operations have incompatible preconditions,
then only the transition can actually take place whose corresponding Z operation holds,
if any. The fact that the Petri net considered in isolation can engage in more behavior
than permitted by the Z specification is not a problem when we analyze the Petri net for
safety-related properties. There, we show that unsafe system states cannot be entered.
Therefore, if the net with the more liberal behavior is safe, than the more restricted
behavior is also safe.

To obtain self-contained and analyzable models, we not only consider the control
software, but also model parts of the environment, for example sensors (see Section 3).

3 Case Study: Production Cell

To illustrate our approach, we model a part of a production cell [LL95]. The production
cell, an existing industrial facility, consists of six physical components: two conveyor
belts, a rotable robot equipped with two extendable arms, an elevating rotary table, a
press, and a traveling crane (which has been added to make the cell self-contained). The
machines are organized in a (closed) pipeline, see Figure 1. Their common goal is to
transport and process metal plates. Altogether, 14 sensors and 34 actuators can be used
to control the cell.

robot

press

travelling crane
arm 2

arm 1

deposit belt (belt 2)

elevating rotary table

feed belt (belt 1)

Fig. 1.Production cell

As a first step to develop the control software, we develop a formal and executable
system specification. To save space, we restrict ourselves to the first two components,
the feed belt and the elevating rotary table, which are quite different technical devices.
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While the feed belt may just be switched on and off, the motion of the table is controlled
by position engines. In addition, the feed belt has two sensors that indicate whether a
plate is at its front or end, respectively.

The original task description considers only the case where at most one plate is on
the feed belt at a time. In our model, the maximal number of plates allowed to be present
on the feed belt (henceforth called feed belt capacity) is a parameter of the specification.
In this way, our model is more general than required by the original task description.

In Section 3.1, we model the two subsystems in Z and specify how their state can
change via operations. The order in which the state-changing operations can occur is
specified by a Petri net given in Section 3.2. In Section 3.3, the Petri net is analyzed
using tools. The coherence of the two specifications is demonstrated in Section 3.4,
and some application-dependent safety-related properties of the model are analyzed in
Section 3.5.

3.1 Z Part of the Specification

The specification models the two subsystems feed belt and table separately1. It exhibits
the situations where the two subsystems must communicate or cooperate to achieve a
desired state transition. For validation purposes, the whole Z specification was type-
checked.2

States of the SubsystemsFor the feed belt, we need to know whether it is switched on
(i.e., whether it moves) or not, and how many plates it carries. We partition the feed belt
into three zones: the front, where new plates are dropped, and where a sensor signals
the presence of a plate; the end, where the plates are passed on to the elevating rotary
table, which is signaled by another sensor; and the zone in between the range of the two
sensors.

< � � � = � > 

� 
 < � � � 
 @ � 
 � � � A C � � D
� � = � 
 E � � � @ � G H = � � � < � > � 
 � � A C � � H � L � > � 
 � �

< = H M 
 A O � O R
� G H = � � � < � > � 
 � � T

� 
 < � � � 
 V � � = � 
 E � � � V � 
 � � �

W � � 
 < � � � = � > 

< � � � = � > 
 X

� G H = � � � < � > � 
 � � X T C
< = H M 
 X T � R

Here, Z 4 [ " 6 4 \ 9 7 is the feed belt capacity, and the type^ _ ^ ` is defined as an enumer-
ation type ^ _ ^ ` d d  ! _ f ! ` . In its initial state, the feed belt is switched off, and
there are no plates on it. The decoration “h ” of variable names means that they describe
the stateafter an operation is completed. Plain variables describe the state in which an
operation is started.

1 A first version of this specification was based on the partial specification given in [LS96].
2 Readers not familiar with Z are referred to [Spi92b].
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For the elevating rotary table (just called “table” in the following), we need to know
its position (modeled by a basic typei 4 j 6 9 k ! 7 l \ l ! _ ), whether it moves or not, and
whether there is a plate on it or not. The typem 9 7 n ! is defined asm 9 7 n ! d d  p 9 7 f _ ! .
Whether or not the table is ready to receive a plate is expressed by the derived state com-
ponent s 4 _ t 9 s 9 l u 9 . The two extreme positions of the table are called6 ! 4 v " ! 7 l \ l ! _
and w _ 6 ! 4 v " ! 7 l \ l ! _ .
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Table control operations We assume a total ordering relation� on the typei 4 j 6 9 k ! -
7 l \ l ! _ , where6 ! 4 v " ! 7 l \ l ! _ is the smallest andw _ 6 ! 4 v " ! 7 l \ l ! _ is the largest position.
The function _ 9 [ \ increases the position by one unit, the function" t 9 u decreases it.
“ � \ 4 j 6 9 ” means that the state of the table may change.
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The operation7 \ 4 t \ 6 ! 4 v \ ! w _ 6 ! 4 v starts the motor in the6 ! 4 v " ! 7 l \ l ! _ , the op-
eration Z ! u 9 6 ! 4 v \ ! w _ 6 ! 4 v increases the position of the table by one unit. When the
table has reached thew _ 6 ! 4 v " ! 7 l \ l ! _ , the motor must be switched off, as specified by
the operation7 \ ! " 4 \ w _ 6 ! 4 v . Because we do not model how the plate is passed on
from the table to the robot, the operationw _ 6 ! 4 v \ 4 j 6 9 just resets the state component

\ 6 ! 4 v 9 v , i.e., w _ 6 ! 4 v \ 4 j 6 9 acts as a consumer.
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The operations7 \ 4 t \ w _ 6 ! 4 v \ ! 6 ! 4 v , Z ! u 9 w _ 6 ! 4 v \ ! 6 ! 4 v , and 7 \ ! " 4 \ 6 ! 4 v are
defined analogously.

Operations related to the feed belt environment These operations correspond to
phenomena that cannot be influenced by the control software of the feed belt but are
reported by sensors. Plates are dropped on the feed belt by a producer, which causes the
sensor at the front of the feed belt to respond (operation6 ! 4 v 2 j ). When the feed belt is
moving, the sensor will eventually report that there is no longer a plate at the front of
the feed belt, as specified by the operation6 9 4 u 9 2 t ! _ \ . Furthermore, the sensor situated
at the end of the feed belt will eventually report that a plate has reached the point where
it can be passed on to the table (operationv 9 \ 9 s \ ).
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Feed belt control operations The feed belt controller must decide when to switch on
or off the feed belt. To take these decisions in such a way that the safety of the system
is guaranteed, it must communicate with the table, i.e., the feed belt control operations
import either� \ 4 j 6 9 (if the state of the table is only queried but not changed) or� \ 4 j 6 9 .

The operation7 � l \ s � ! _ specifies that the feed belt may only be switched on if the
table is ready to receive a plate or if there is no plate at the end of the feed belt. The
feed belt must be switched off if a plate has arrived at the end of the feed belt but the
table is not ready to receive it (operation7 � l \ s � ! ` ). Otherwise, the plate is passed on
from the feed belt to the table, as specified by the operation2 j \ ! \ 4 j 6 9 .

Note that the Z specification cannot entirely describe the behavior of the production
cell. It only restricts possible behavior via preconditions of operations.
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3.2 Petri Net Part of the Specification

Figure 2 shows the Petri net that specifies the control flow, i.e., the order in which the
various Z operations can be executed. To enhance the readability of the Petri net, we
introduce the following two layout conventions. (1) To avoid edge crossing we uselog-
ical nodes(the gray ones) to serve as connectors between identically named nodes. (2)
Each independent process is drawn separately, and synchronization happens by logical
nodes (there is place as well as transition synchronization).

Moreover, to avoid unnecessary restrictions of the concurrency degree, we use test
arcs (black dots instead of the arrow head) to model side conditions of transitions (i.e.,
places that are incoming as well as outgoing for a given transition). Under the interleav-
ing semantics, test arcs can be simulated by two opposite arcs between the transition
and its side condition.

Following these rules, the Petri net exhibits a strong separation of controller and
environment model into different parts. The controller part generally consists of a finite
and static set of communicating processes, one for each physical component. The en-
vironment part is composed of small reusable net components: the producer/consumer
processes of the work flow, and the devices of the controlled plant (as far as they are
necessary on the net level).

Each physical device is basically characterized by its finite set of discrete states
(e.g., the sensor4 \ 2 t ! _ \ may recognize a plate or not, the feed belt may be switched
on or off), whereby a discrete state may represent an equivalence class of a possibly
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Fig. 2. Petri net for production cell
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infinite set of states (e.g.l _ j 9 \ � 9 9 _ summarizes all feed belt states where some plate
is located between the two sensors). Obviously, each device must be in one and only
one state at any time. In terms of Petri net theory, the states of a device form a place
invariant establishing a consistency condition of the system model, see Section 3.3.

To model the assumption of intelligent environment behavior (the producer places
a new plate on the belt only if there is room for it), we introduce a place for the state
variable _ w Z j 9 t ! 2 " 6 4 \ 9 7 , and a co-placeZ 4 [ " 6 4 \ 9 7 for its maximal value. In this
way, we get a generic system specification - the given feed belt capacity is adapted by
the parameterZ 4 [ " 6 4 \ 9 7 .

Note that there are six Z-labeled transitions, among them all conflicting transitions
of the table controller. The transition2 j \ ! \ 4 j 6 9 , engaged in a conflict within the feed
belt controller, is not a Z-labeled one, because the transition is enabled if and only if
the precondition of its Z operation holds. In contrast, the operations7 � l \ s � ! ` and7 � l \ s � ! _ have more detailed preconditions than perceivable in the Petri net structure.
Therefore, they are labeled with Z.

For comparison: In [HDS99], a hierarchical Petri net model of the complete produc-
tion cell has been published, comprising altogether about 200 places and 200 transitions
structured into 65 pages. The feed belt–table subsystem needs 46 places and 34 tran-
sitions. The Petri net of Figure 2 consists of only 17 places and 13 transitions, which
makes a reduction factor of about 2.5.

3.3 Analysis of the Petri Net

Following our approach, the wide variety of available Petri net analysis techniques and
tools becomes applicable for computer-aided model analysis. We briefly summarize the
results of analyzing the Petri net of Figure 2, using our current Petri net tool box. The
following tools have been applied: PED – a hierarchical Petri net EDitor [Tie97] for
design, PEDVisor [Men97] for token flow animation, the Integrated Net Analysis tool
INA [SR97] for analysis of the consistency conditions, and PEP [BG96] for analysis of
the concurrency degree.

After being satisfied with the behavior exhibited by the animation of the Petri net,
we perform general analyses. As a general consistency condition for our model, we
show that the underlying Petri net is well-formed (which combines boundedness and
liveness).

Boundedness.A place invariant[ is a set of places, for which the token conservation
equation �

� � � [ & " ; � Z   & " ;  �
� � � [ & " ; � Z & " ;

holds for all reachable markingsZ . Our net is covered by the following 8 semi-positive
place invariants (where[ & " ; always equals 1 for the mentioned places, and 0 other-
wise):

l _ u £ d & 4 \ 2 t ! _ \ ¤ _ ! \ 4 \ 2 t ! _ \ )l _ u ¥ d & 4 \ 9 _ v ¤ _ ! \ 4 \ 9 _ v ;l _ u ¦ d & Z u \ ! _ ¤ Z u \ ! ` ;
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l _ u § d & _ w Z j 9 t ! 2 " 6 4 \ 9 7 ¤ Z 4 [ " 6 4 \ 9 7 ;
l _ u ¨ d & 4 \ 2 t ! _ \ ¤ 4 \ 9 _ v ¤ Z 4 [ " 6 4 \ 9 7 ¤ l _ j 9 \ � 9 9 _ ;
l _ u © d & \ 4 j 6 9 w _ 6 ! 4 v 9 v ¤ Z ! u l _ ª £ ¤ s 4 _ t 9 s 9 l u 9 ¤ \ 4 j 6 9 6 ! 4 v 9 v ¤ Z ! u l _ ª ¥ ¤ 4 \ w _ 6 ! 4 v " ! 7 ;
l _ u « d & s ! _ 7 w Z 9 t t 9 4 v p ;
l _ u ¬ d & " t ! v w s 9 t t 9 4 v p ;

Therefore it is bounded. More concretely: the token sum of the place invariants 1–
3, 6–8 equals 1. Therefore, the corresponding places are 1-bounded. The token sum
of the place invariants 4 and 5, on the other hand, equalsZ 4 [ " 6 4 \ 9 7 . Therefore, the
corresponding places can hold at mostZ 4 [ " 6 4 \ 9 7 tokens. Hence, we are able to con-
clude the k-boundedness of the net (with  Z 4 [ " 6 4 \ 9 7 ). Moreover, by combining
the place invariants 4 and 5 we are able to conclude that for all reachable markings
holds: 4 \ 2 t ! _ \ ® l _ j 9 \ � 9 9 _ ® 4 \ 9 _ v  _ w Z j 9 t ! 2 " 6 4 \ 9 7 , which reflects an obvi-
ous consistency condition of the feed belt model, see Sect. 3.1, invariant of the schema

2 9 9 v j 9 6 \ .

Liveness.The net structure is extended simple, and the structural property called dead-
lock-trap property [Sta90] holds. Therefore, we can conclude without construction of
the total system space that the pure net is live (which includes deadlock freedom). This
is a necessary condition for the liveness of the Z-Petri net.

Concurrency degree.Figure 3 shows the basic concurrent behavior (after the initial-
ization phase) of a production cell with a feed belt capacity of one. It has been derived
from the so-called finite prefix of branching processes (produced by PEP), to high-
light (and check) the essential behavior of the designed production cell. The derived
net demonstrates the behavior of the Petri net shown in Figure 2 under the partial order
semantics by showing two concurrent cycles of atomic actions (transitions, Z opera-
tions), synchronized by one common operation (2 j \ ! \ 4 j 6 9 ). In other words, the action
sequence6 ! 4 v 2 j – 6 9 4 u 9 2 t ! _ \ – v 9 \ 9 s \ to equip the feed belt occurs concurrently with
the table’s motions from6 ! 4 v " ! 7 l \ l ! _ to w _ 6 ! 4 v " ! 7 l \ l ! _ and back.

The three conflicts (non-deterministic behavior) in the concurrent behavior descrip-
tion are resolved by the Z operations’ preconditions, because these exclude each other.
Taking those into account, the feed belt is only switched off if the table does not work
fast enough. Consequently, the feed belt will still be running while it is empty (because
the producer is too slow). Therefore, the net is not reversible: loading the feed belt, and
moving the table to the load position while the feed belt is switched off may happen only
once at the beginning. This kind of behavior (which may be deemed to be undesirable)
hardly becomes obvious by merely inspecting the specification.

If Z 4 [ " 6 4 \ 9 7  £ , there only exists concurrency between operations on different
subsystems that are independent of each other, i.e., work on disjoint state components.
For Z 4 [ " 6 4 \ 9 7 ° £ , however, we can identify the following concurrent operations3:

3 Up to now, the theory of (a finite prefix of) branching processes is restricted to 1-bounded
Petri nets. Therefore, the identification of the additional concurrent operations was not tool-
supported. However, the generalization to bounded Petri nets is an emerging research area in
Petri net theory.
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start load to unload

detect

leavefront

load fb

switch off

switch on

stopat unload

unloadtable

stopat load

start unloadto load

fb to table

moveunloadto load

moveload to unload

Fig. 3. Concurrent behavior of Petri net of Fig. 2 forH � L � > � 
 � � T D

– The operation6 ! 4 v 2 j may happen concurrently withv 9 \ 9 s \ , 7 � l \ s � ! _ , 7 � l \ s � ! ` ,
and2 j \ ! \ 4 j 6 9 .

– The operation6 9 4 u 9 2 t ! _ \ may happen concurrently withv 9 \ 9 s \ , and2 j \ ! \ 4 j 6 9 .

3.4 Checking Coherence of the Two Specifications

As described in Section 2, we must show the compatibility of the two specifications.
It is easily verified that the initial marking of the Petri net is consistent with the Z

specification. For example, there is a token at the place_ ! \ 4 \ 2 t ! _ \ , which is neces-
sary because the initial condition of the feed belt requires_ w Z j 9 t ! 2 " 6 4 \ 9 7  ² .

For the chains in the Petri net, it is also easy to see that the postconditions of all
operations in a chain are compatible with the preconditions of their successors. As an
example, consider the operations7 � l \ s � ! ` and 7 � l \ s � ! _ . The operation7 � l \ s � ! `
establishes the condition2 j Z u \  ! ` , as required by7 � l \ s � ! _ . Because7 � l \ s � ! `
establishes the condition4 \ 9 _ v  £ , the second precondition of7 � l \ s � ! _ , viz.

_ w Z j 9 t ! 2 " 6 4 \ 9 7 ° ² is also fulfilled. It follows that after a7 � l \ s � ! ` operation,
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a 7 � l \ s � ! _ operation is possible as soon ass 4 _ t 9 s 9 l u 9 holds, i.e., as soon as the
table is ready.

Finally, we must demonstrate that the order in which concurrent operations are in-
voked is irrelevant. Considering for example the operations6 ! 4 v 2 j and v 9 \ 9 s \ , we
first identify the set of states where both preconditions hold. For these states, we have

² � _ w Z j 9 t ! 2 " 6 4 \ 9 7 � Z 4 [ " 6 4 \ 9 7 , 4 \ 2 t ! _ \  4 \ 9 _ v  ² , 2 j Z u \  ! _ , and
l _ j 9 \ � 9 9 _ ° ² . Executing the operations6 ! 4 v 2 j and v 9 \ 9 s \ yields a state where
_ w Z j 9 t ! 2 " 6 4 \ 9 7 is increased by one,l _ j 9 \ � 9 9 _ is decreased by one,4 \ 2 t ! _ \  
4 \ 9 _ v  £ , and2 j Z u \  ! _ , independently of the order in which the operations are
invoked. For the other concurrent operations, the reasoning proceeds in the same way.

3.5 Application-Dependent Validation of the Model

Lewerentz and Lindner [LL95] enumerate several safety requirements for the produc-
tion cell control software. The requirements concerning the feed belt and the table are:

1. The blanks have sufficient distance so that they can be distinguished.
2. The table does not move beyond its extreme points.
3. Blanks are not dropped off the feed belt when the table is not ready. The feed belt

is stopped before this can happen.

Requirement 1 is reflected in our specification by the precondition of the operation
6 ! 4 v 2 j : the state variable4 \ 2 t ! _ \ must be zero, which means that the sensor reports
that no plate is present at the front of the feed belt. This condition suffices to fulfill
requirement 1. Once the operation6 ! 4 v 2 j is implemented, it must be demonstrated
that the implementation indeed faithfully reflects the Z specification.

Requirement 2 is taken care of in the postconditions of the operations7 \ ! " 4 \ 6 ! 4 v
and 7 \ ! " 4 \ w _ 6 ! 4 v . When the table has reached one of the extreme positions, the posi-
tion engines are switched off, and the operationsZ ! u 9 w _ 6 ! 4 v \ ! 6 ! 4 v or Z ! u 9 6 ! 4 v -

\ ! w _ 6 ! 4 v respectively, are no longer possible. Again, every implemented system be-
ing correct with respect to the Z specification fullfills safety requirement 2.

To show that requirement 3 is fulfilled, we must show that if4 \ 9 _ v  £ -
2 j Z u \  ! _ - s 4 _ t 9 s 9 l u 9  _ ! then 2 j Z u \  ! ` must hold within a certain
time bound that is small enough to prevent the plate from being dropped in an unsafe
area. If Z 4 [ " 6 4 \ 9 7  £ , we can show that2 j Z u \  ! ` holds in the next state after

4 \ 9 _ v  £ - 2 j Z u \  ! _ - s 4 _ t 9 s 9 l u 9  _ ! holds, because the only opera-
tion whose precondition is fulfilled is7 � l \ s � ! ` . If Z 4 [ " 6 4 \ 9 7 ° £ , however, we can
only guarantee under the interleaving semantics that2 j Z u \  ! ` holds after at most

¥ & Z 4 [ " 6 4 \ 9 7 ¹ £ ; operations other than7 � l \ s � ! ` have been executed (these oper-
ations are6 ! 4 v 2 j and 6 9 4 u 9 2 t ! _ \ ). An exact proof that the feed belt is switched off
fast enough requires a quantitative analysis using time-dependent Petri nets or a partial
order semantics. Using transitions whose firing is restricted by time intervals, we would
be able to formulate and check the time conditions under which7 � l \ s � ! ` is always
faster than6 ! 4 v 2 j and 6 9 4 u 9 2 t ! _ \ , respectively.
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4 Conclusions

Nowadays, it is well recognized that combining data-oriented and behavioral formalisms
is an adequate approach to specify embedded systems4, and in particular safety-critical
systems. Z has been combined with a number of other formalisms. We contrast our ap-
proach with two such combinations that have been specifically designed for specifying
safety-critical embedded systems.

The combination of Z and real-time CSP defined by Heisel and S¨uhl [HS96] leads
to very abstract and concise specifications, but tool support for validating specifications
is limited and it is in general impossible to animate such specifications.

The languageº » ¼ developed in the German ESPRESSproject [BDG½ 96] is a com-
bination of the Statemate languages [HLN½ 90] (namely statecharts and activity charts)
and Z. Its advantage is that many engineers are familiar with finite state machines and
hence may findº » ¼ specifications easily accessible.

The combination of Z and Petri nets, however, is superior to both afore-mentioned
combinations as far as the means for animation and analysis are concerned. Animation
tools provide an executable model of the system that allows customers to get an im-
pression of how the system will behave. Furthermore, a variety of analysis tools (which
are available free of charge) provide richer validation facilities than they are available
for other formalisms. Checking consistency of the two parts of the specification further
enhances confidence in the model.

The reader may see some similarities between our approach and CPN [Jen92] (a
quasi-standard of coloured Petri nets), which combines Petri nets with inscriptions writ-
ten in (a version of) the functional programming language ML. Because our primary
objective is formal system specification, however, we prefer to use a pure specification
language instead of a programming language in combination with Petri nets.

Our case study has shown that, because of the combination with Z, the Petri net
model becomes quite concise and well comprehensible. The reduction of the number
of nodes is considerable. Hence, our combination of Z and Petri nets is a promising
approach to model safety-critical systems and validate these models.

To make our combined language acceptable to a wider audience, it is necessary to
provide methodological support for its application. In the future, we intend to develop
methods for

– Setting up combined specifications.
Here, we need to develop heuristics for the order in which the two parts of a specifi-
cation are developed, how to separate the software controller from its environment,
etc.

– Validating combined specifications.
A relation to classical safety analysis techniques would be desirable.

– Deriving implementations from combined specifications.

4 This year, an international workshop “Integrated Formal Methods 1999–A Workshop on Com-
bining State-Based and Behavioural Formalisms” on this specific topic takes place.
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The combined language, an underlying methodology, and related tool support is
likely to lead to a powerful approach for tackling the problem of system and especially
software safety.
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