
04/08/24 1 / 8

Boel, R.; Stremerch, G. (eds): Discrete Event Systems, Analysis and Control;
Kluwer Academic Publishers 2000, ISBN 0-7923-7897-0, pp. 275-282

Time-related Modelling of PLC Systems
with Time-less Petri Nets *)

Monika Heiner, Thomas Menzel
Brandenburg University of Technology at Cottbus
Department of Computer Science
Postbox 101344, D-03013 Cottbus, Germany
phone: +49-355 69 3885, fax.: +49-355 69 3830
{mh,thm}@informatik.tu-cottbus.de, http://www.informatik.tu-cottbus.de

Key words: Petri nets, programmable logic controller, system program, static analysis.

Abstract: At WODES ’98, we introduced an approach to modelling and analysis of PLC
systems using ordinary Petri nets. This paper supplements the former one by
presenting detailed contributions to a systematic model design of the application
program’s surroundings. For that purpose, design aspects of the environment
model as well as three different kinds of models for the system program are
discussed. As a side effect, an obvious principle of timer modelling turns out.

1. INTRODUCTION

Programmable Logic Controllers (PLC) are widely used in many industrial
areas, including especially safety-critical applications. Therefore, it is an
challenging objective of the responsible professional to validate newly
developed PLC against a separately given specification of functional, safety
and performance requirements. Any mathematically stringent validation
requires some kind of formal model of the system under validation. Among
other formalisms, Petri nets represent a well-established and promising
approach due to the inherent concurrency of many PLC applications.

One objective of our on-going project is the explicit support of devel-
opment engineers, who are hardly interested in formal methods. Consequently,
the aim is to transform automatically an existing PLC application into a corre-
sponding Petri net - at least as far as possible. The resulting net model allows
impartial validation of the given requirements by the numerous available
sophisticated Petri net analysis techniques and tools [Heiner98a].

*) This work is supported by the German Research Council under grant ME 1557/1-1

2 / 8 mh@informatik.tu-cottbus.de

DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

The systematic model generation of a PLC system may be divided into four
steps:

1. translation of the application program (written e.g. in instruction list
notation [IEC1131-3]), as described in [Heiner98b], full version in
[Heiner97].

2. modelling the uncontrolled plant (plant without controller), using a
suitable library of Petri net components of the environment model (see
chapter 2),

3. modelling resp. selection of the adequate system program (see chapter
3),

4. composition of the three model parts of the steps 1-3 to the total system
model.

Step 1 has to be repeated until the application program satisfies the given
requirements. Step 2 needs to be done once for each configuration of the
uncontrolled plant, while step 3 generally takes place just once during the
project development cycle.

This paper is organized as follows: The next chapter discusses some
essential aspects of the environment model, and chapter 3 presents three
different types of system program modelling and related consequences. We
conclude with final remarks in chapter 4.

2. THE ENVIRONMENT MODEL

The validation of PLC systems, as of any kind of reactive systems, does not
only require a model of the software - the controlling part of the system, but
also an adequate model of the plant - the controlled part of the system. The
latter one is shortly called environment model.

Basically, the environment model is a state-
oriented one. Each local state, reachable in the
uncontrolled plant (e.g. a switch is on or off), is
represented by a corresponding (logical) place.
Each actuator, effecting a local state change in
the plant, is modelled as a (logical) transition
between the related places (e.g. switch_on and
switch_off). For a small example see top of
Figure 1.

Generally, a PLC system can only process
discrete values, and analogue values have to be

S_switch_off
S_switch_on

block

S_off

S_on

Figure 1: Environment model
with blocking place.

S_
switch_
on

S_
switch_
off

04/08/24 3 / 8

Time-related Modelling of PLC Systems with Time-less Petri Nets

discretized appropriately. Consequently, each significant state or significant
set of equivalent states of any analogue sensor is modelled as a (logical) place
in the environment model.

Moreover, PLC-based automation engineering generally assumes that
there are no state changes in the environment during the application program’s
execution. With other words: the control program is considered to be fast
enough to observe all state changes in the environment. In order to ensure this
assumption in the model, a mechanism is needed to block temporarily actuator
transitions. For that purpose, a single blocking place is introduced
additionally.

The initially marked blocking place is connected with each transition of
the environment model by a so-called read arc (highlighted graphically by a
black dot instead of the arc arrow, compare bottom of Figure 1). Semantically,
read arcs establish side conditions for transition firing. Therefore, the whole
environment model can now be blocked by just removing the token from the
blocking place.

The synchronisation between PLC and plant, necessary to reflect the
correct PLC semantics, is realized by the system program (compare next
chapter). It removes the token from the blocking place before starting (the next
cycle of) the application program, and it puts back the token after finishing (a
cycle of) the application program’s execution.

This enforced synchronization behaviour eliminates unrealistic system
states in the model, which has two very important consequences for the
analysis quality:
• safety properties (something bad never happens) become more likely to

be analyzable because the model’s state space becomes smaller,
• liveness properties (something good may happen) become analyzable at

all, because unrealistic system states in the model behaviour distort these
kind of properties.

However, there are still unrealistic state changes possible in our formal
model while the environment model is unblocked. Examples are: nothing
happens in the environment, resulting into the repeated execution with
identical parameters, or a sequence of changes in the environment takes place
before the application program is executed again. The next chapter is devoted
to that problem and will present three different approaches to solve it.

4 / 8 mh@informatik.tu-cottbus.de

DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

3. THE SYSTEM PROGRAM MODEL

Each PLC application
program is embedded in a PLC
system program, which is
basically responsible for two
different tasks. At first, it trans-
forms the physical data of the
environment into application
program values, and vice versa.
For that purpose, the system
program maps external values and values of internal variables to each other.
Figure 2 illustrates how that may look like as Petri net for the small example
of Figure 1, whereby S_off/S_on stand for external values and S_0/S_1 stand
for internal values.

Secondly, the system program
drives the (infinite) cyclic execution
of the application program. Such a
cycle is shortly called PLC cycle.
The basic scheme of the interplay of
system program and application
program within a PLC system is
given in Figure 3.

The PLC cycle establishes exactly
two time points, at which an inter-
action between PLC program and
environment can take place. The
environment state is only propagated
to the PLC program by the mapping
of external into internal values during
the ’system in’ phase. There is no
communication with the environment
during the execution of the appli-
cation program, therefore any state
changes are not observable for that
time.

Consequently, it is obviously very important for a controlled system
behaviour that the execution of the application program happens fast enough.
If the execution speed of the application program is much higher in relation to
the speed of environment changes, then all changes in the environment are

S_1S_0

S_0
S_onS_off

S_1
S_0S_1

S_on S_off

Figure 2: Mapping of external to internal values.

sy
st

em
 in

1. statement

2. statement

last statement

ap
pl

ic
at

io
n

pr
og

ra
m

sy
st

em
 o

ut

cy
cl

ic
 e

xe
cu

tio
n

reading
in port values ->
internal variables

writing
internal variables

-> out ports

Figure 3: PLC cycle scheme.

ex
ec

ut
io

n
in

 c
on

st
an

t t
im

e
(P

L
C

 c
yc

le
 ti

m
e)

application program
execution

04/08/24 5 / 8

Time-related Modelling of PLC Systems with Time-less Petri Nets

observed and processed by the application program. This closes the loop back
to the basic assumption mentioned in the chapter before and explains at the
same time the reasoning behind it.

Following this line, absolute execution speeds can been reduced to a
relation between speeds: on the one side of the PLC system, determining the
execution time, and on the other side of the state changes within the
environment. Using this term, the crucial point may now be rephrased as: how
much faster is the controller compared with the environment. This relation
determines significantly the PLC system behaviour, therefore it should be
considered in the model of the system program. Basically, there are three
different alternatives:
• State changes in the environment are possible after each PLC cycle (3.1).
• State changes in the environment are possible after a certain number of

executions of the application program (3.2).
• State changes in the environment are only possible if the application

program has computed completely the output values for the set of input
values read at the beginning of the cycle (3.3).
The following sections discuss these three alternatives resulting into

different system programs (which generally exhibit different system
behaviour).

3.1 One Cycle Blocking

This semantics may be realized by the
model sketch shown in Figure 4. The start
of the PLC cycle is combined with the
token removal from the global blocking
place (compare chapter 2). Therefore, no
more state changes in the environment
model are possible from that point on.
Having excluded any enabled transitions
within the environment model, all
external values are read and mapped to
internal variable values.

After one complete execution of the
application program (between the places
’Begin IL’ and ’End IL’, not given in the figure here), the output values are
written and the environment is released by laying back a token on the blocking
place.

Figure 4: System program with
one cycle blocking.

Set OutputSet Input

start

block
unblock

End ILBegin IL

block

6 / 8 mh@informatik.tu-cottbus.de

DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

Obviously, the plant is blocked for just one PLC cycle. In the understanding
of the automation engineering it reflects the expectation that the PLC reacts on
each input mapping within exactly one cycle. With other words, the corre-
sponding output mapping is produced completely within one cycle.

3.2 Blocking for n Cycles

This semantics is considered to be
likely to reflect the realistic case.
Generally, the execution speed of a
PLC is n times faster than the
environment is able to change. A cycle
counter is introduced to model that
factor n, using the same binary repre-
sentation of values as described in
[Heiner98b] for program variables.
The environment is blocked for n
cycles following the procedure
discussed in the preceding section. The
resulting model is quite large, therefore
Figure 5 just shows a part of it.

Worth mentioning here is the fact
that this type of modelling allows at the
same time the introduction of timers. In
case of PLC programming, timers are
no real-time ones, but the timer value
represents a relation to a given number
of PLC cycles which are all executed in
constant cycle time. Therefore, the
timer progress may be determined by
help of the cycle counter.

3.3 Blocking until Complete Output Mapping

This semantics assumes that a PLC is always as fast as necessary to
compute a complete output mapping for a given set of input values before any
state changes in the environment may happen.

Therefore, the environment is blocked as long as the application program

Set OutputSet Input

start

block
unblock

End ILBegin IL

block

increment m

m == n
0

1

m = 0

Figure 5: System program with factor n.

04/08/24 7 / 8

Time-related Modelling of PLC Systems with Time-less Petri Nets

changes some variable values. As soon as there are no more changes of
variable values, the output mapping has been computed completely, and any
more cycles will not bring any news.

There are four IL commands, which can change a variable’s value: R -
Reset, S - Set, ST - Store, STN - Store if not. Each command possesses its own
Petri net component, modelling its IL semantics (for details see [Heiner98b]).
These basic components have to be extended by a flag indicating any variable
changes occurring during the PLC cycle (see Figure 6 for an example of the
command S Step).

Having done these extensions, the system program can be modelled as
given in Figure 7. This model of the system program checks, whether there has
been a change of any variable value. If this is the case, the environment is kept
blocking. If the execution has reached eventually a cycle where nothing news
happens (no variable obtains a new value), then the environment is released.

Finally, this system model reflects adequately the fact that a PLC is always
much faster than the controlled environment. The output mapping is always
computed completely before any input values may change.

Again, this model may be improved by a counter, in order to support timer

Ak_1

Step_0Step_0

Step_1
Ak_0 Ak_1

VarChng

VarChng_offVarChng_on

VarChng_on

VarChng

Figure 6: Extension of some Petri net modules.

Set OutputSet Input

start

unblock

End ILBegin IL

block

Figure 7: Blocking until complete output mapping.

block

VarChng_off

VarChng_on
VarChng_off

block

unblock

VarChng_on
VarChng_off

block

8 / 8 mh@informatik.tu-cottbus.de

DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

components. But in this case, a value range check is necessary, because a PLC
with a system program of type 3 may run unpredictably long.

4. SUMMARY

In this paper, a method has been described to transform a PLC system into
a Petri net in order to allow stringent analyses. Special emphasis has been laid
on the system program’s modelling style. Different approaches have been
discussed to describe timely relations between the speeds of the application
program’s execution and of any changes in the controlled environment.

In opposite to [Hanisch97], only time-free ordinary place/transition nets are
used. All graphically highlighted net extensions are just syntactical sugar.
Therefore, the resulting Petri nets are analyzable by the available powerful set
of conventional Petri net analysis techniques and tools [Heiner99].

But the most crucial point is that an adequate modelling of the synchroni-
zation between controlling and controlled system part avoids unrealistic model
behaviour, and therefore allows the analysis of not only safety properties, but
also of liveness properties.

References

[IEC1131-3] IEC Standard 1131-3, Programmable controllers - Part 3: Programming lan-
guages; Int. Electrotechnical Commission, 1993.

[Hanisch97] Hanisch, H.-M. et al.: Modelling of PLC Behaviour by Means of Timed Net Con-
dition / Event Systems; Proc. 6th IEEE Int. Symposium on Emerging Technologies and
Factory Automation (ETFA ’97), Los Angeles, Sept. 1997, pp. 361-396.

[Heiner97] Heiner, M.; Menzel, T.: Petri Net Semantics for the PLC User programming lan-
guage Instruction List (in German); Techn. Report BTU Cottbus, I-20/1997, Cottbus
December 1997.

[Heiner98a] Heiner, M.: Petri Net Based System Analysis without State Explosion; Proc. High
Performance Computing ’98, Boston, April 1998, SCS Int. San Diego 1998, pp. 394 - 403.

[Heiner98b] Heiner, M.; Menzel, T.: A Petri Net Semantics for the PLC Language Instruction
List; IEE Workshop on Discrete Event Systems (WODES ’98), Cagliari/Italy, August 1998.

[Heiner99] Heiner, M.; Deussen, P.; Spranger, J.: A Case Study in Design and Verification of
Manufacturing System Control Software with Hierarchical Petri Nets; Int. J. of Advanced
Manufacturing Technology, Springer-Verlag London, (1999) 15, pp. 139-152.

