
A Problem-Oriented Approach to

Common Criteria Certification

Thomas Rottke1, Denis Hatebur1, Maritta Heisel2, and Monika Heiner3

1 TÜViT GmbH, System- und Softwarequalität
Am Technologiepark 1, 45032 Essen, Germany

{t.rottke,d.hatebur}@tuvit.de
2 Institut für Praktische Informatik und Medieninformatik

Technische Universität Ilmenau
98693 Ilmenau, Germany

maritta.heisel@tu-ilmenau.de
3 Brandenburgische Technische Universität Cottbus, Institut für Informatik

03013 Cottbus, Germany
mh@informatik.tu-cottbus.de

Abstract. There is an increasing demand to certify the security of sys-
tems according to the Common Criteria (CC). The CC distinguish sev-
eral evaluation assurance levels (EALs), level EAL7 being the highest
and requiring the application of formal techniques. We present a method
for requirements engineering and (semi-formal and formal) modeling of
systems to be certified according to the higher evaluation assurance lev-
els of the CC. The method is problem oriented, i.e. it is driven by the
environment in which the system will operate and by a mission state-
ment. We illustrate our approach by an industrial case study, namely an
electronic purse card (EPC) to be implemented on a Java Smart Card.
As a novelty, we treat the mutual asymmetric authentication of the card
and the terminal into which the card is inserted.

1 Introduction

In daily life, security-critical systems play a more and more important role.
For example, smart cards are used for an increasing number of purposes, and
e-commerce and other security-critical internet activities become increasingly
common. As a consequence, there is a growing demand to certify the security of
systems.

The common criteria (CC) [1] are an international standard that is used
to assess the security of IT products and systems. The CC distinguish several
evaluation assurance levels (EALs), level EAL7 being the highest and requiring
the application of formal techniques even in the high-level design.

Whereas the CC state conditions to be met by secure systems, they do not
assist in constructing the systems in such a way that the criteria are met. In this
paper, we present a method for requirements engineering and (semi-formal or
formal) modeling of systems to be certified according to the higher evaluation

S. Anderson et al. (Eds.): SAFECOMP 2002, LNCS 2434, pp. 334–346, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Problem-Oriented Approach to Common Criteria Certification 335

assurance levels of the CC. This method is used by TÜViT Essen1 in supporting
product evaluations.

The distinguishing feature of our method is its problem orientation. First,
problem orientation means that the starting point of the system modeling is
an explicit mission statement, which is expressed in terms of the application
domain. This approach is well established in systems engineering [3], but in
contrast to other requirements engineering approaches, especially in software
engineering [9]. Such a mission statement consists of the following parts:

1. external actors and processes
2. objective/mission of the system
3. system services
4. quality of services

From our experience, the mission statement provides the main criteria for
assessing, prioritizing and interpreting requirements.

Second, problem orientation means that we do not only model the system
to be constructed, but also its environment, as proposed by Jackson [6]. This
approach has several advantages:

– Without modeling the environment, only trivial security properties can be
assessed.
For example, an intruder who belongs to the environment must be taken
into account to demonstrate that a system is secure against certain attacks.

– With the model of the environment, a test system can be constructed at the
same time as the system itself.

– The problem oriented approach results in a strong correspondence between
the reality and the model, which greatly enhances validation and verification
activities as they are required for certification.

In the CC, the environment of the system is contained only indirectly via
subjects, which must be part of the security policy model. Another difference to
the CC is that our method not only takes into account the new system to be
constructed, but also performs an analysis of the current system in its environ-
ment.

Figure 1 shows the most important documents that have to be constructed
and evaluated for certification:

– The objective of the security target (ST) is to specify the desired security
properties of the system in question by means of security requirements and
assurance measures.

– The security policy model (SPM) shows the interaction between the sys-
tem and its environment. This model provides a correspondence between
the functional requirements and the functional specification enforced by the
security policy.

1 TÜViT is an independent organization that performs IT safety and security evalu-
ation.

336 Thomas Rottke et al.

ST (Security Target)

Environment

Security
Objectives

Security
Objectives

FunctionalFunctional
Requirements

SummarySummary
Specification

RCR

RCR

RCR

formal semi-formal informal

TOE-Description

SPM
Security Policy Model

FSP
Functional Specification

HLD
-Level -

HLD
High-Level -Design

Low-Level-

LLD
Low-Level-Design

IMPIMP
Implementation

Fig. 1. CC documents for development

– The functional specification (FSP), high-level-design (HLD), low-level-design
(LLD) and implementation (IMP) are development documents that are sub-
ject to evaluation.

– In addition to the development documents, representation correspondences
(RCR) documentation is required to ensure that appropriate refinement
steps have been performed in the development documents.

In the following, we describe our problem oriented approach in Section 2,
and then illustrate it in Section 3 by an industrial case study, namely an EPC
to be implemented on a Java Smart Card. As a novelty, we treat the mutual
asymmetric authentication of the card and the terminal into which the card is
inserted. In this case study, we use the notations SDL [2], message sequence
charts (MSCs) [5], and colored Petri nets [7]. Finally, we sum up the merits of
our method and point out directions for future work.

2 The Method

Our method gives guidance how to develop the documents required for a CC
certification in a systematic way. Because of the systematic development and the
use of semi-formal and formal notations, the developed documents can readily
be evaluated for conformance with the CC.

To express our method, we use the agenda concept [4]. An agenda is a list
of steps or phases to be performed when carrying out some task in the context
of software engineering. The result of the task will be a document expressed in
some language. Agendas contain informal descriptions of the steps, which may
depend on each other. Agendas are not only a means to guide software develop-
ment activities. They also support quality assurance because the steps may have
validation conditions associated with them. These validation conditions state
necessary semantic conditions that the developed artifact must fulfill in order to
serve its purpose properly.

Table 1 gives an overview of the method. Note that the method does not
terminate with Phase 4. There are two more phases that are beyond the scope

A Problem-Oriented Approach to Common Criteria Certification 337

Table 1. Agenda for problem oriented requirements engineering and system
modeling

Phase Content Format CC Documents Validation

1. Problem
oriented require-
ments capture

list of requirements informal — reviews

2. Analysis of
current system

description of current
system status

informal
or semi-
formal

— reviews

3. Problem
oriented require-
ments analysis

description of desired
system status, mis-
sion statement

informal
or semi-
formal

ST: environ-
ment, TOE de-
scription,security
objectives

each statement
of phase 1 must
be incorporated;
internal consis-
tency must be
guaranteed.

4. Problem ori-
ented modeling

context diagram, sys-
tem interface descrip-
tions, system environ-
ment description

possibly
formal

ST: functional
requirements,
summary spec-
ification; FSP,
SPM

see sub-agenda,
Table 2.

of this paper. In Phase 5, the model constructed in Phase 4 is validated. Fi-
nally, the model is refined by constructing a high-level design, a low-level design
and an implementation (Phase 6). In this paper, however, we concentrate on
the systematic development of the requirements and specification documents.
Validation and refinement issues will be treated in separate papers.

Setting up the documents required by the CC need not necessarily proceed
in the order prescribed by the CC outline. Our process proceeds in a slightly
different order. The “CC Documents” column in Table 1 shows in which phases
which CC documents are developed.

The purpose of Phase 1 is to collect the requirements for the system. These
requirements are expressed in the terminology of the system environment or the
application domain, respectively. Requirements capture is performed by conduct-
ing interviews and studying documents. The results of Phase 1 are validated by
reviewing the minutes of the interviews together with the interview partner and
by reviewing the used documents with their authors.

In Phase 2, the current state of affairs must be described, analyzed and
assessed. External actors and entities must be identified; functionalities must be
described and decomposed. The result of this phase are domain-specific rules, as
well as descriptions of the strengths and weaknesses of the current system. As
in Phase 1, the validation of the produced results is done by reviews.

The results of Phases 1 and 2 are not covered by the CC. However, they are
needed to provide a firm basis for the preparation of the CC documents.

338 Thomas Rottke et al.

Table 2. Agenda for problem oriented system modeling

Phase Content Format CC Docu-
ments

Validation

4.1. Context
modeling

structure of system em-
bedded in its environment

context
diagram

SPM part 1 must be compati-
ble with Phase 3

4.2. Define
constraints
and system
properties

TOE security require-
ments, security require-
ments of environment

instan-
tiated
text from
CC part 2
catalogue

ST: func-
tional re-
quirements,
summary
specification

see Phase 3

4.3. In-
terface
definition

data formats, system be-
havior at external inter-
faces

data dic-
tionary,
MSCs

FSP, part 1 each service con-
tained in the
mission statement
must be modeled

4.4. Model-
ing of system
environment

external components and
their behavior, environ-
mental constrains and as-
sumptions

CEFSM SPM, part 2 must be compati-
ble with Phases 3
and 4.1

4.5 Model-
ing of system
services

service specifications informal
text and
CEFSM

FSP, part 2 see Phase 4.3

The goal of the requirements analysis, i.e. Phase 3, is to qualitatively describe
which purpose the new system serves in its environment, and which services it
must provide. Strict requirements and constraints for the new system are set up.
As in Phase 2 for the existing system, external actors and entities are identified
for the desired system. The requirements captured in Phase 1 can now be made
more concrete. Thus, the mission statement is set up. The validation condition
associated with Phase 3 requires that all requirements captured in Phase 1 be
taken into account in the mission statement. In contrast to Phase 2, which makes
descriptive statements, Phase 3 makes prescriptive statements.

The purpose of Phase 4 is to define the system and its environment. The
system entities and their attributes are defined, as well as the processes and
procedures they are involved in. Case distinctions imposed by domain rules are
identified with respect to the entities and processes.

This phase consists of five sub-phases, which are also represented as an
agenda, see Table 2.

In Phase 4.1, the boundary between the system and its environment is de-
fined.

In Phase 4.2, the security requirements for the target of evaluation (TOE) and
for the system environment are instantiated from the CC by defining constraints
or properties.

A Problem-Oriented Approach to Common Criteria Certification 339

In Phase 4.3, the interface of the system is specified in detail. MSCs are used
to represent traces of system services.

In Phases 4.4 and 4.5, communicating extended finite state machines (CEF-
SMs) are set up for the environment as well as for each system service identified
in the mission statement. For each service, functional as well as non-functional
properties must be defined.

3 Case Study: Electronic Purse Card (EPC)

We now illustrate the method presented in Section 2 by an industrial case study2.
EPCs are introduced to replace Eurocheque (EC) cards for the payment of goods
purchased in retail stores. For reasons of space, we can present only parts of the
documents produced when performing our method.

As a novelty, we define an EPC system that uses mutual asymmetric au-
thentication. This security protocol guarantees mandatory authenticity of two
communication partners. In contrast to the symmetric authentication, the asym-
metric authentication procedures have the advantage that they do not need a
common secret between the partners.

In case of asymmetric authentication, each communication partner has its
own key pair which is generated independently from other key pairs within the
terminals and the cards, respectively. A personalization authority initiates the
key generation within the components and the signing of the public key by a cer-
tification authority to ensure the correctness of the key generation procedure. By
using asymmetric authentication, the e-cash procedure becomes open to other
terminal manufacturers and card emitters, as long as their components are per-
sonalized by the personalization authority. In the following, we sketch each of
the development phases introduced in Section 2.

Phase 1: problem oriented requirements capture. Requirements for the EPC sys-
tem include:

– Payment must be simple for all participants.
– Payment is anonymous, but at the same time authentic; non-repudiation is

guaranteed.
– Stolen EPCs cannot be used.
– EPCs and terminals can be neither intercepted nor forged.

Phase 2: analysis of current system. In this phase, it is described how payment
with EC cards proceeds. Figure 2 shows the different stages.

Examples of domain-specific rules are that a personal identification number
(PIN) has four digits, and that it must be counted how often a wrong PIN has
been entered.

Some weaknesses of the EC card system are that payments are not anony-
mous, that the access to the customer’s account is protected only by the PIN,

2 Similar systems have been evaluated by TÜViT, Essen.

340 Thomas Rottke et al.

buy with EC card

in
se

rt
 E

C
 c

ar
d

in
ca

rd
 r

ea
de

r

re
m

ov
e

E
C

 c
ar

d
fr

om
 te

rm
in

al

in
pu

t a
m

ou
nt

 in
te

rm
in

al

in
pu

t P
IN

co
m

m
it

am
ou

nt

P
IN

 v
er

ifi
ca

tio
n

po
st

in
g

tr
an

sa
ct

io
n

pr
in

tin
g

re
ce

ip
t

es
ta

bl
is

h
co

nn
ec

tio
n

to
tr

an
sa

ct
io

n
sy

st
em

cl
os

e
co

nn
ec

tio
n

to
tr

an
sa

ct
io

n
sy

st
em

Fig. 2. Payment with Eurocheque card

buy with EPC

personalize EPC

in
se

rt
 E

P
C

 in
to

te
rm

in
al

account money on
EPC

pay with EPC

re
m

ov
e

E
P

C
 fr

om
te

rm
in

al

in
pu

t P
IN

P
IN

 v
er

ifi
ca

tio
n

au
th

en
tic

at
io

n
of

ca
rd

 a
nd

 te
rm

in
al

in
pu

t a
m

ou
nt

 in
te

rm
in

al

co
m

m
it

am
ou

nt

tr
an

sf
er

 a
m

ou
nt

pr
in

tin
g

re
ce

ip
t

Fig. 3. EPC system

and that the connection between the terminal and EC card is insecure. Hence,
customer profiles can be constructed, the customer can be damaged by revelation
of the PIN, and the system is not protected against man-in-the-middle-attacks.

Phase 3: problem oriented requirements analysis. EPCs function differently from
EC cards. Before the customer can pay with the EPC, the card must be loaded.
For this purpose, it must be inserted into a bank terminal, and the PIN and
the desired amount must be entered. Purchasing goods with the EPC proceeds
similarly as with the EC card, but the amount is debited from the card instead
of from the customer’s account. Moreover, the bank and cash terminals and the
EPC must be personalized by a personalization authority. This means that a
pair of keys (a public and a private one) is generated for each component, where
the public key is certified by a certification authority.

Figure 3 shows the desired services of the EPC system.
The EPC system, too, has potential weaknesses. For example, a man-in-

the-middle attack or spying out the PIN may be possible. An analysis of such
weaknesses and the corresponding attack scenarios lead to the following security
goals:

– Debiting the customer account is done in a secure environment (bank ter-
minal).

– An EPC is useless if its secrets are unknown.
– Neither the cards nor the terminals can be copied or forged.

A Problem-Oriented Approach to Common Criteria Certification 341

– The connections between the terminals and the EPC are encrypted, so that
intercepting those connections is useless.

– Transactions take place only between authenticated components.

The following assumptions concerning the environment must be made:

– The personalization of the card is secure.
– The bank terminals are installed in a protected area and cannot be inter-

cepted.

Now, the requirements set up in Phase 1 can be made more concrete. Sim-
plicity of payment means that a payment is performed just by debiting the EPC.
The customers only need to type their PIN and to confirm the transaction. The
store personnel only needs to specify the amount and to hand the printed receipt
to the customer. Anonymity is guaranteed, because the only documentation of
the payment is the customer receipt. Because of the authentication mechanism,
authenticity and non-repudiation are guaranteed. Stolen cards cannot be used,
because the PIN is known only to the card holder, and the card secret will not be
revealed by an authenticated terminal. Interception is made useless by encryp-
tion, and copying cards is prevented by preventing direct access to the physical
card storage. Inh this paper, we have only given an informal sketch of Phase 3.
In real-life projects, this phase is performed much more thoroughly.

Phase 4.1: context modeling. We present two different documents that show the
system and its embedding in its environment. Figure 4 shows the security policy
model for the EPC system in SDL notation. It shows the EPC in its environ-
ment consisting of an intruder, a terminal, a personalization and a certification
authority (CA).

The personalization and CA components are not the main concern of our
discourse and are therefore drawn with dotted lines. The terminal is used for
e-cash transactions. It is personalized, which means that it has a key pair, and
its public key is signed by certification authority. The intruder models a man-in-
the-middle attack, i.e. the intruder intercepts the communication between card
and terminal and can therefore attack both the card and the terminal. The EPC
is the target of evaluation (TOE). The card application includes functionality
for mutual asymmetric authentication, PIN check, credit and debit transactions.
It is assumed that the card is personalized. The components in the SPM are in-
terconnected by channels, shown in the diagram by inscripted arcs. The external
channels chUser and chCard represent the interactions between Terminal and
User and between Terminal and CardReader. The internal channels connect
Terminal and Intruder or Intruder and EPC, respectively.

If a system is to be certified according to EAL7, we need a completely formal
model, which we express as a colored Petri net (CPN).

Phase 4.2: define constraints and system properties. As an example for the CC
part 2 catalogue we take the component FCS COP.1.1 (Cryptographic operation
from class cryptographic support):

342 Thomas Rottke et al.

system SPM

Intruder

EPC

Terminal

Personalization

CA

chAttack
sFakeTerminal,
sFakeApplet

chEPCToIntruder

chUser

sReturn,
sSignDocumentReturn

sIdentify, sCredit, sDebit,
sSignDocument,

chPersonalizeTerminal

sReturn,
sGenerateTerminalKeysReturn

sPersonalizeTerminal,
sGenerateTerminalKeys

chCA

sGetGlobalCAKey,
sSignKey

sGetGlobaCAKeyReturn,
sSignKeyReturn

chPersonalizeCard

sPersonalizeCard,
sGenerateCardKeys

sReturn,
sGenerateCardKeysReturn

chTerminalToIntruder

sTransferKey, sIdentify,
sMutualAuth, sGetRandom
sSignHash, sCredit, sDebit

chPersonalize

sPersonalizeTerminalReturn,
sPersonalizeCardReturn

sPersonalizeTerminal,
sPersonalizeCard

chCard
sReturn

sInsertCard, sRemoveCard

sTransferKey, sIdentify,
sMutualAuth, sGetRandom
sSignHash, sCredit, sDebit

sMutualAuthReturn,
sGetRandomReturn

sATR, sTransferKeyReturn,
sSignHashReturn,

sMutualAuthReturn,
sGetRandomReturn

sATR, sTransferKeyReturn,
sSignHashReturn,

Fig. 4. SDL security policy model

FCS COP.1.1 The TSF3 shall perform [assignment: list of cryptographic
operations] in accordance with a specified cryptographic algorithm [as-
signment: cryptographic algorithm] and cryptographic key sizes [assign-
ment: cryptographic key sizes] that meet the following: [assignment: list
of standards].

For our EPC system, this component is instantiated as follows:

FCS COP.1.1 The TSF shall perform the mutual authentication proce-
dure in accordance with a specified cryptographic algorithm RSA and
cryptographic key sizes of 1024 bit that meet the following: IEEE 1363.

In addition, it is necessary to follow all dependencies between the components.
In this case, the FCS COP.1.1 component requires to include the cryptographic
key generation component.

Phase 4.3: interface definition. As an example, we consider the asymmetric
authentication protocol. It is specified by means of a message sequence chart,
which in fact is the common specification technique for technical protocols.
3 TOE security function

A Problem-Oriented Approach to Common Criteria Certification 343

EPC

sGetRandom (void)

sGetRandom Return (vRndCard)

sTransferKey
(vPublicKeyTerm, vSigPublicKeyTerm)

sTransferKeyReturn
(vPublicKeyCard, vSigPublicKeyCard)

vPrivateKeyCard,
vPublicKeyCard,

vSigPublicKeyCard,
vPublicKeyGlobal

vPrivateKeyTerm,
vPublicKeyTerm,

vSigPublicKeyTerm,
vPublicKeyGlobal

vRndTerm = genRandom(),
vSKRndTerm = genRandom(),

vSigRndCard = makeSigvPrivateKeyTerm (vRndCard)
vEncrRndTerm = encrvPublicKeyCard (vRndTerm),

vEncrSKRndTerm =
encrvPublicKeyCard (vSKRndTerm)

vRndCard = genRandom()

sMutualAuth (vSigRndCard,
vEncrRndTerm,vEncrSKRndTerm)

checkSig vPublicKeyGlobal
(vSigPublicKeyTerm,

vPublicKeyTerm)

Terminal

checkSig vPublicKeyGlobal
(vSigPublicKeyCard,

vPublicKeyCard)

vSKRndCard = genRandom(),
vSigRndTerm = makeSigvPrivateKeyCard (

decrvPrivateKeyCard (vEncrRndTerm)),
vEncrSKRndCard =

encrvPublicKeyTerm (vSKRndCard)),
checkSigvPublicKeyCard(vSigRndCard,

vRndCard),
vSessionKey=calcSK(vSKRndCard,

decrvPrivateKeyCard(vEncrSKRndTerm))

sMutualAuthReturn (vSigRndTerm,
vEncrSKRndCard)

checkSigvPublicKeyCard (vSigRndTerm, vRndTerm),
vSessionKey=calcSK(

decrvPrivateKeyTerm (vEncrSKRndCard), vSKRndTerm)

Intruder

sGetRandom (void)

sGetRandom Return (vRndCard)

sTransferKey
(vPublicKeyTerm, vSigPublicKeyTerm)

sTransferKeyReturn
(vPublicKeyCard, vSigPublicKeyCard)

sMutualAuth (vSigRndCard,
vEncrRndTerm,vEncrSKRndTerm)

sMutualAuthReturn (vSigRndTerm,
vEncrSKRndCard)

Fig. 5. MSC of authentication protocol

Figure 5 shows a successful asymmetric mutual authentication between a
terminal and an EPC, intercepted by an intruder. The sequence of action can
be divided into three phases:

– public key exchange and check of public key signature using the pulic key of
the CA

– random number request by terminal
– authentication and session key generation

Each phase starts with a command called by the terminal followed by an EPC
response.

Phase 4.4: modeling of system environment. For reasons of space, we cannot
present the CEFSMs representing the environment.

344 Thomas Rottke et al.

process CardMutualAuthentication

PersonalizedAndInserted

sTransferKey

CheckSig

sTransferKeyReturn sTransferKeyError

WaitForGetRandom PersonalizedAndInserted

WaitForGetRandom

sGetRandom *

sGetRandomReturn

GenerateRandom

WaitForMutualAuth

PersonalizedAndInserted
WaitForMutualAuth

sMutualAuth *

Generate SKRandomCard
Calculate SignatureOfRandomTerm

Encrypt SKRandomCard
CalculateSessionKey

Check SignatureOfRandomCard

sMutualAuthReturn sMutualAuthError

PersonalizedAndInserted

TermAuthenticated PersonalizedAndInserted

Err

OK

Err

OK

*

PersonalizedAndInserted

Fig. 6. SDL definition of authentication

Phase 4.5: modeling of system services. We consider the authentication service,
where we present an SDL and a CPN version.

The EPC part of the asymmetric authentication protocol is modeled as an
SDL state machine, see Figure 6. The three phases of the MSC are reflected
by the three parts of the state machine. The state machine starts in the state
PersonalizedAndInserted.

1. The phase “Public Key Exchange and Check of Public Key Signature” leads
to the state WaitForGetRandom or remains in the state Personalized−
AndInserted.

2. The phase “Random Number Request by Terminal” leads to the state Wait−
ForMutualAuth or back to the state PersonalizedAndInserted.

3. The phase “Authentication and Session Key generation” leads to the state
Term− Authenicated or back to the state PersonalizedAndInserted.

The state machine is now modeled formally in CPN, see Figure 7. It is just
a translation of the SDL protocol machine into CPN. Therefore the CPN model
also contains the same three phases, states and transitions. In CPN, the states
of the state machine are modeled by places for simple tokens. The channels are

A Problem-Oriented Approach to Common Criteria Certification 345

tState

Personalized
AndInserted

WaitFor
GetRandom

tslIntr2CC tslCC2Intr

CheckSigOK

CheckSigErr

OtherSignal

sTransferKey

sStar

sStar<>sTransferKey

sTransferKey

sTransferKeyReturn

sTransferKeyError

CheckSig = Err

CheckSig = OK

GenerateRnd

OtherSignal

sStar<>sGetRandom

sGetRandom

WaitFor
MutualAuth

sStar

sGetRandomReturn
(GenerateRandom)

Authenticated

NotAuth

OtherSignal

sMutualAuth

sStar

sStar<>sMutualAuth

sMutualAuth

sMutualAuthReturn
(Generate and Encrypt

SKRandom,
CalculateSig of Random)

sMutualAuthError

CheckSig of Random
of Card = Err

CheckSig of Random
 of Card = OK

Terminal
Authenticated

Personalized
AndInserted

Personalized
AndInserted

calculate
SessionKey

FP

FP

FP

tslIntr2CC
tState

tState

tState

tState tState

tslCC2IntrActualState

Fig. 7. CPN model of authentication

also modeled by places, but using more complex tokens (colors). Arc inscriptions
are used to model the functionality of the transitions. Conditions are modeled
with the CPN guard mechanism.

In the subsequent phases of the method, these documents will be further val-
idated and refined. Because of the formal nature of the documents, the required
security properties can be demonstrated in a routine way [8].

4 Conclusions

We have presented a method to model systems in such way that their certification
according to the higher levels of the CC is well prepared. This method shows
that problem analysis can be performed in an analytic and systematic way, even
though problem analysis is often regarded as an unstructured task that needs
– above all – creative techniques. In contrast, we are convinced that problem

346 Thomas Rottke et al.

analysis requires sound engineering techniques to achieve non-trivial and high-
quality results. Using our method, formal documents as they are required by the
CC, can be developed in an appropriate way.

The problem orientation of the method ensures a high degree of correspon-
dence between the system model and the reality. This is due to the facts that the
modeling process is oriented on the system mission and that the requirements
are analyzed using terms of the application domain.

Such a correspondence is crucial. If it is not given, inadequate models may be
set up. Such inadequate models may have serious consequences: relevant prop-
erties may be impossible to prove. Instead, irrelevant properties may be proven,
which would lead to an unjustified trust in the system.

Our method is systematic and thus repeatable, and gives guidance how to
model security properties. The risk of omissions is reduced, because the agenda
leads the attention of the system engineers to the relevant points.

Because of our method, we are now able to suggest some improvements to the
CC. Until now, the CC required security models only for access control policies
and information flow policies, because only these belonged to the state of the
art. By modeling the system environment, we have succeeded in setting up a
formal model also for authentication.

To the best of our knowledge, we are the first to propose such a systematic,
problem oriented approach to CC certification.

In the future, we will work on validation and refinement in general, and on
a complete validation of authentication SPM in particular.

References

[1] Common criteria. See http://www.commoncriteria.org/. 334
[2] F. Belina and D. Hogrefe. The CCITT Specification and Description Language

SDL. Computer Networks and ISDN Systems, 16(4):311–341, March 1989. 336
[3] B. Blanchard and W. Fabrycky. Systems Engeneering and Analysis. Prentice

Hall, 1980. 335
[4] M. Heisel. Agendas – a concept to guide software development activites. In R.N.

Horspool, editor, Proc. Systems Implementation 2000, pages 19–32. Chapman &
Hall London, 1998. 336

[5] ITU-TS. ITU-TS Recommendation Z.120anb: Formal Semantics of Message Se-
quence Charts. Technical report, ITU-TS, Geneva, 1998. 336

[6] M. Jackson. Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, 2001. 335

[7] K. Jensen. Colored Petri nets. Lecture Notes Comp. Sci.: Advances in petri nets,
254:248–299, 1986. 336

[8] K. Jensen. Colored Petri nets, Vol. II. Springer, 1995. 345
[9] G. Kolonya and I. Sommerville. Requirements Engineering. Wiley, 1997. 335

	A Problem-Oriented Approach to Common Criteria Certification
	Introduction
	The Method
	Case Study: Electronic Purse Card (EPC)
	Conclusions

