
MARCIE - Model checking And
Reachability analysis done effiCIEntly

Martin Schwarick and Monika Heiner
Computer Science Department

BTU Cottbus, Germany
Email: ms@informatik.tu-cottbus.de

monika.heiner@informatik.tu-cottbus.de

Christian Rohr
Magdeburg Centre for Systems Biology (MaCS)

Magdeburg, Germany
Email: rohrch@tu-cottbus.de

Abstract—MARCIE is a multi-threaded tool for the analysis
of Generalized Stochastic Petri Nets. Its capabilities range from
standard properties of qualitative Petri nets to CTL and CSL
model checking, recently extended by rewards. The core of MAR-
CIE builds upon Interval Decision Diagrams for the symbolic
representation of marking sets of bounded Petri nets (finite state
space) and on-the-fly matrix computation for numerical analysis.
Approximative engines supporting fast adaptive uniformization
and Gillespie simulation open the door to quantitative reasoning
on unbounded Petri nets (infinite state space). This paper presents
MARCIE’s architecture and its most important distinguish-
ing features. Extensive computational experiments demonstrate
MARCIE’s strength in comparison with related tools.

I. MOTIVATION

Stochastic Petri Nets (SPN) [1] and Generalized Stochastic
Petri Nets (GSPN) [2] are frequently used formalisms to model
and analyze concurrent systems. In the last three decades they
have specifically been used in technical application domains
to investigate, e.g., communication protocols or manufacturing
systems [3, 4]. An SPN associates firing rates to transitions
of the underlying qualitative Petri net and can be seen as a
high-level description of a Continuous-Time Markov Chain
(CTMC). The SPN class can be generalized to GSPN by
adding so-called immediate transitions, which immediately
fire when becoming enabled. States with enabled immediate
transitions have a zero sojourn time and are called vanishing
states. The GSPN’s semantics is not a CTMC anymore, but
can still be reduced to it.

The structural description of (G)SPNs and their Markovian
semantics offer the modeler a large variety of qualitative and
quantitative analysis methods which have been implemented
in numerous software tools. Many methods consider the set
of reachable states and thus suffer from the state space
explosion problem. Symbolic approaches relying on Decision
Diagrams (DD), e.g., Binary Decision Diagrams (BDD) [5]
or related generalizations, permit qualitative reasoning over
reachable states in new dimensions (beyond 1028 states [6]).
This includes also model checking of, e.g., CTL formulas.

However, quantitative analyses of the induced CTMC re-
quire efficient processing of the state transitions which are
weighted with real values. Kronecker algebra [4] or general-
izations of BDDs, such as Multi-Terminal Decision Diagrams
(MTDD), allow for the analysis of models of remarkable state

space size, but in general need some pre-conditions to be
fulfilled. Often the models must exhibit a modular structure
(Kronecker), or the domain of the real-valued transition rates
must be relatively small (MTDD). BDD-based techniques
require prior knowledge of the domain of the model variables
(boundedness degree of the places) and only work for a
moderate domain size. Generally, the success of DD-based
approaches for qualitative and quantitative analyses relies on
a suitable variable order, which may be implicitly given by a
modular structure.

Recently, (G)SPNs have also been used in Systems Biology
[7, 8, 9, 10] as they allow an intuitive modeling of biochemical
reaction networks. Tokens on places may represent molecules
or concentrations levels, and the transitions’ firing rates define
biochemical kinetics. Often, such models do not exhibit a
modular structure and the usually state-dependent firing rates
generate a large variety of individual rate values. Moreover,
the state space explosion is aggravated by the combinatorial
distribution of a large number of tokens in a relatively small-
sized model, which usually results in a high boundedness
degree of all places. Even worse, biological networks often
exhibit an unbounded state space, which restricts the analysis
to approximative and simulative techniques.

These aspects were our main motivations to develop an
efficient and easy to use analysis tool, tailored to the par-
ticularities of biochemical reaction networks. We address high
boundedness degrees, without requiring its prior knowledge,
by a symbolic state space representation based on Interval
Decision Diagrams (IDDs) [11], and the possibly huge number
of different rate values by a symbolic “on-the-fly” [12] engine
which is used for numerical CTMC analysis. Our automatic
computation of suitable variable orders exploits the net struc-
ture without relying on a predefined modularization of the
model. Complementary, we provide efficient approximative
and simulative analysis methods in order to support unbounded
nets. Many analysis algorithms are parallelized.

The resulting tool is MARCIE, which has been developed
with these issues in mind. It outperforms established tools for
many benchmarks [6, 12, 13, 14]. This paper gives for the
first time an overview of MARCIE’s architecture and its most
important distinguishing features.



II. THE TOOL

In the following we assume basic knowledge of the Petri
net formalism. A general introduction can be found in [2], a
tutorial tailored to Systems Biology in [8].

A. Overview

MARCIE is a tool for GSPN analysis, supporting qualitative
and quantitative analyses including model checking facilities.
Particular features are symbolic state space analysis including
efficient saturation-based state space generation, evaluation of
standard Petri net properties as well as CTL model checking.
Further it offers symbolic CSL model checking and permits to
compute expectations for rewards which can be added to the
core GSPN. Most of MARCIE’s features are realized on top
of an IDD implementation [11]. IDDs are used to efficiently
encode interval logic functions representing marking sets of
bounded Petri nets. Thus, MARCIE falls into the category
of symbolic analysis tools as SMART [15] and PRISM [16].
However, recently it has been extended by approximative and
simulative engines, which work explicitly, to support also
stochastic analysis of unbounded nets.

MARCIE is entirely written in C++, and uses the libraries
GMP, pthreads flex/bison and boost. It comprises about
40, 000 source lines of code. MARCIE is available for non-
commercial use; we provide statically linked binaries for Mac
OS X and Linux. The tool, the manual and a benchmark suite
can be found on our website http://www-dssz.informatik.tu-
cottbus.de/DSSZ/Software/Marcie. Currently, MARCIE itself
comes with a textual user interface. Options and input files can
also be specified by a generic Graphical User Interface (GUI)
(Fig. 1), written in Java, which can be easily configured by

Fig. 1. Generic Graphical User Interface.

means of an XML description. The GUI is part of our Petri
net analyser Charlie [17].

B. Implementation

In the following we present the basic tool architecture,
which is depicted in Fig. 2. We will sketch the main ideas be-
hind the single components which have been considered during
MARCIE’s development to achieve highly efficient analysis
capabilities. In this paper we will concentrate on quantitative
analysis aspects because this is the most challenging part.
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Fig. 2. MARCIE’s architecture and its nine components.

1) GSPN Representation: MARCIE analyses Generalized
Stochastic Petri Nets as defined in [2] and tailored to the
specific needs of Systems Biology in [10]. They have to be
specified in an adaption of the APNN format [18] which we
call APNN* [19]. In addition to standard and inhibitor arcs, it
knows read, equal and reset arcs. Currently there is no support
for marking-dependent arc weights.

GSPN associates functions to transitions. For a stochastic
transition, this function defines the firing rate, for an imme-
diate transition, the function defines a weight which may be
necessary to resolve conflicts between simultaneously enabled
immediate transitions. MARCIE permits these functions to
be marking-dependent; thus places can occur as function
variables. However, for each transition, the function’s domain
is restricted to its pre-places. To allow arbitrary functions, the
user may add so-called modifier arcs, which make places to
pre-places of a transition without affecting their enabledness.

The model specification supports constants to parameterize
initial markings, functions and arc weights.

The net structure is crucial for the performance of most
analyses techniques in MARCIE. The GSPN Representation
component is responsible for an efficient access to all struc-
tural informations and all defined rate and weight functions.

2) IDD Engine: The core of MARCIE is an efficient IDD
implementation. An IDD is a directed, rooted and acyclic



graph which consists of non-terminal nodes labeled with
variables and two terminal nodes labeled with 1 and 0. IDDs
can be seen as generalization of the popular BDDs, but allow
non-terminal nodes to have an arbitrary number of outgoing
arcs. These arcs are labeled with intervals over the natural
numbers. As usual, we assume a fixed order over the set of
variables which must hold on every path starting at the IDD
root and going to one of the two terminal nodes. A Reduced
Ordered Interval Decision Diagram (ROIDD) does not contain
isomorphic sub-diagrams and the labels of the outgoing arcs
of a non-terminal node create a non-reducible partition of the
natural numbers. It yields a canonical representation of an
interval logic function; an example is given in Fig. 3.

In our setting, the set of variables is equal to the set of places
in the given Petri net. Marking sets can now be represented
by interval logic functions and thus encoded using IDDs.

The implemented IDD engine exhibits several features to
address efficiency issues, as for instance the concept of shared
DDs, fast detection of isomorphic sub-diagrams by use of an
unique table, and efficient operation caches; see [11] for a
detailed discussion. Furthermore, the engine offers dedicated
operations for the forward and backward firing of Petri net
transitions.
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Fig. 3. An IDD representing f = (x1 < 3) ∨ (x1 ∈ [4, 6) ∧ x2 ≤ 2).

3) State Space Analysis: Bounded Petri nets can be anal-
ysed based on the knowledge of the states, which are reachable
from the initial marking. Thus the first step is often the state
space construction. MARCIE implements three different state
space generation algorithms upon its IDD engine.

1) Common Breadth-First Search (BFS): an iteration fires
sequentially all transitions (according to the transition
ordering) before adding the new states to the state space.

2) Transitions chaining: like BFS, but the state space is
updated after the firing of each single transition.

3) Saturation algorithm (SAT): transitions are fired in con-
formance with the decision diagram, i.e. according to
an ordering, which is defined by the variable ordering.
A transition is saturated if its firing does not add new
states to the current state space. Transitions are bottom-
up saturated (i.e. starting at the terminal nodes and going
towards the root). Having fired a given transition, all pre-
ceding transitions have to be saturated again, either after
a single firing (single) or the exhausted firing (fixpoint)
of the current transition.

Having the state space, MARCIE permits to find dead states
and to decide reversibility and liveness of transitions, which
involves a symbolic decomposition of the state space into
strongly connected components.

4) Order Generator: It is well known that the variable order
used in constructing a DD has a strong influence on its size in
terms of the number of nodes, and thus on the performance of
related operations. To find the optimal variable order is an NP-
hard problem. MARCIE uses heuristics to pre-compute static
variable orders. The simple underlying idea is to examine the
structure of the given Petri net and to arrange dependent places
close to each other. Two places are dependent if there are
transitions whose firing affect the marking of both places [20].
In [12] we used this idea to successfully improve PRISM’s
performance. MARCIE offers the user seven different options
to influence the generation of the place order.

Transition Chaining and Saturation are improved algorithms
for the state space generation. Their efficiency depends in
general on the order in which the Petri net transitions are
considered. Thus MARCIE takes care of creating suitable
transition orders. There are six different options to influence
the used transition order.

5) CTL Model checker: The Computation Tree Logic
(CTL) [21] is a widely used branching time logic. It permits to
specify properties over states and paths of a labeled transition
system (LTS), the Kripke structure. So-called path quantifiers
specify whether path formulas, which can be written be means
of temporal operators, should be fulfilled on all paths or at
least on one path starting in some state. One can interpret the
reachability graph of a Petri net as a Kripke structure and thus
apply CTL model checking algorithms. The basic idea is to
label all LTS states with the sub-formulas they satisfy. This is
done by a postorder traversal of the given CTL formula tree.
In an explicit setting, the evaluation of path formulas can be
done by a depth-first-search strategy to find a witness path or
a counter example. In a symbolic setting, one computes for all
sub-formulas the set of satisfying states. This can be achieved
for path formulas by applying fixpoint computations based on
backward reachability analysis as it is efficiently realized in
MARCIE. For a detailed discussion of IDD-based CTL model
checking we refer to [11].

6) Exact CTMC Analysis: In addition to the qualitative
analysis MARCIE supports quantitative analysis of SPNs.
While qualitative analysis can be realized symbolically based
on the reachable states, quantitative analysis requires the
computation of probability distributions of the induced CTMC.
CTMC analysis is a well studied subject and established
algorithms are available [22]. In general the computation
of a probability distribution must be done numerically. For
this purpose, all real-valued non-zero state transitions and a
number of computation vectors have to be stored in memory
in addition to the state space of the CTMC. The set of state
transitions can be written as a matrix, the so-called rate matrix,
which is in general extremely sparse. Then, the core operation
is a matrix-vector multiplication.



There are several approaches to compactly store the rate
matrix either explicitly in some sparse matrix format or
symbolically using Kronecker representations or some kind of
decision diagrams. The latter approach is the most promising
one as it does not require specific model properties (besides
being bounded). The basic idea is to encode a state transition,
which consists of a state pair and a real value, as a path
in a decision diagram. One can distinguish two different
approaches to store the real values: either in the terminal nodes
(MTDD) or distributed over the edges of the diagram (Edge-
Valued Decision Diagrams); see, e.g., [23, 24] for a brief
overview. In any case, the extraction of the matrix entries is
done by a traversal of the decision diagram. In a full symbolic
approach one would also encode the computation vectors by
decision diagrams, but this turned out to be not efficient.
Thus, most approaches are hybrid; a symbolic matrix encoding
combined with explicitly stored computation vectors.

MARCIE follows the hybrid approach in a slightly different
way. It combines a symbolic state space representation with
an “on-the-fly” strategy. The idea of such a “matrix-free”
approach was proposed in [25] with explicitly storing the state
space. MARCIE computes the matrix entries by simulating
the firing of the Petri transitions. This is done by traversing
the IDD which represents the state space and which has been
augmented by additional information to allow the computation
of state indices similar to [26, 27]. During a traversal MARCIE
considers the effect of firing all transitions of the net for
each state and computes the relevant state indices. Further it
collects the arguments for the state-dependent rate functions
of the Petri net transitions. Considering the transition firing
in forward (backward) direction permits to realize a matrix-
vector (vector-matrix) multiplication [12, 13]. This “on-the-
fly” approach is significantly less sensitive to the number
of different non-zero values in the rate matrix [12] than the
MTDD approach.

A DD traversal has in general exponential effort. Thus it is
important to realize an efficient caching mechanism. The usual
operation caches are not suitable in our setting. Thus MARCIE
follows a strategy similar to that in [27]. The traversal will
stop at a predefined node layer, where the information of
all possible path extensions are compactly stored. The actual
matrix entries will be computed from the information of
the current path and the stored cache data. The computation
vectors and the entries of the matrix diagonals are explicitly
stored in arrays of double precision type.

Another way to increase the efficiency is to make use
of today’s multi-core computers by multi-threading. The im-
plemented matrix-vector/vector-matrix multiplication can be
performed in a multi-threaded fashion.

Upon these basic capabilities to efficiently perform oper-
ations on the CTMC’s rate matrix which is induced by a
stochastic Petri net, MARCIE implements standard algorithms
to compute transient and steady state probability distributions.

Transient probabilities. The computation of transient prob-
abilities can be achieved by solving the system of Kolmogorov
differential equations, which can be done using different meth-

ods, as for instance uniformization, Krylov subspace methods,
or ordinary differential equations [22]. When dealing with very
large and cyclic CTMCs, as it is often the case, the method
of choice is uniformization. The basic idea is to embed a
discretization of the CTMC into a Poisson process. Doing so,
the computation of the transient probability distribution for a
specific time point reduces to that of Discrete Time Markov
Chains (DTMCs), which can be done by a repeated matrix-
vector multiplication. MARCIE provides multi-threaded tran-
sient analysis based on uniformization.

Steady state probabilities. The computation of a steady
state probability distribution requires to solve a homogeneous
system of equations. In the light of a symbolic matrix rep-
resentation, iterative methods as Jacobi and Gauss-Seidel are
favoured to direct methods as Gauss elimination, because they
do not change the matrix. Currently, MARCIE offers a multi-
threaded Jacobi solver and a Gauss-Seidel solver. The Gauss-
Seidel method requires a single computation vector and con-
verges in many cases much faster than Jacobi, but requires a
row-wise extraction of the matrix entries. MARCIE’s caching
approach does not allow an efficient row-wise extraction. As
a compromise, MARCIE also provides a Pseudo-Gauss-Seidel
solver [27].

Rewards. Often it is not sufficient to just reason about the
probability to be in a certain state at a certain time point
or in steady state. The expected time spent in certain states,
the expected number of transition firings within a given time
interval, and comparable measures can be of interest, too.
For this purpose, it is possible to extend a stochastic Petri
net to a stochastic reward net [28] by adding rewards, which
define additional measures; they can be associated to states and
transitions. A reward for a given state will be accumulated and
weighted with its sojourn time. A transition reward is acquired
each time a transition fires.

MARCIE supports the addition of rewards to a GSPN by
loading a set of reward structures. A reward structure is a set
of reward items – state reward items and transition reward
items. A reward item must specify a set of states by means
of an interval logic function and a possibly state-dependent
reward function defining the actual reward value.

MARCIE represents rewards internally as additional, im-
plicit Petri net transitions, which allows us to apply the “on-
the-fly” approach also to compute rewards; see [14] for more
details.

Immediate transitions. All quantitative analyses can be
applied without any exception to GSPNs. In this case, the “on-
the-fly” engine has also to consider the vanishing states, which
may represent the majority of reachable states, as one can see
in Table II. This will substantially increase the memory effort.
Furthermore, MARCIE needs an additional computation step
to propagate the probabilities from the vanishing states to the
tangible states. In summary, dealing with GSPNs is much more
expensive, and we recommend, if possible, to transform the
GSPN in a SPN as proposed in [2].

7) Approximative CTMC Analysis: The exact quantitative
analysis of GSPNs is restricted to bounded state spaces.



Approximative techniques are needed in order to analyze
unbounded models or models with very huge state spaces
(! 1× 109 states).

Approximative numerical analysis. To overcome the prob-
lem of an unmanageable state space size, the approxima-
tive numerical analysis prunes insignificant states. The basic
idea is to combine a breadth-first variant of the state space
construction with a transient analysis using uniformization.
During construction, all explored states having a probability
below a specified threshold will be removed from the current
state space. Thus, only a finite subset of a possibly infinite
state space will be considered. This “sliding window” method
[29] can be further enhanced by a technique called adaptive
uniformization, where the Poisson process is replaced by a
birth process. This combination was first introduced in [30]
as fast adaptive uniformization (FAU). In contrast to the
exact numerical analysis,MARCIE’s implementation of this
algorithm uses an explicit state space representation.

Simulation. If the approximate numerical analysis exceeds
the available memory, the method of choice has to be simu-
lation. MARCIE provides the stochastic simulation algorithm
introduced by Gillespie [31]. It generates paths of finite length
of a possibly infinite CTMC. Unlike the numerical analysis,
the memory consumption of the simulation is constant, be-
cause only the current state is hold in memory. It is necessary
to perform a reliable amount of simulation runs due to the
variance of the stochastic behaviour.

We choose the confidence interval method as described in
[32] to determine the required number of simulation runs.
The user can specify the confidence interval by defining the
confidence level, usually 95% or 99%, and the estimated
accuracy, e.g., 1×10−3 or 1×10−4. MARCIE calculates the
required number of simulation runs to achieve this confidence
interval. Besides that, the user can set the number of simulation
runs manually.

Each simulation run is done independently of the others.
Thus, it is not challenging to parallelize the stochastic sim-
ulation. So MARCIE provides a multi-threaded simulation
engine.

Immediate Transitions. The approximative numerical anal-
ysis as well as the simulation are capable of handling imme-
diate transitions. The approximative numerical analysis has to
handle two types of states for this purpose. Besides tangible
states (only stochastic transition are enabled), vanishing states
can appear, where one or more immediate transitions are
enabled. Vanishing states are processed as soon as they occur,
because of the (per definition) higher priority of immediate
transitions.

The simulative processing of immediate transitions is rather
straightforward, see [33] for details. The stochastic simulation
can not only deal with GSPN, but can also analyse eXtended
Stochastic Petri Nets (XSPN). A detailed discussion can be
found in [34].

8) CSL Model checker: The Continuous Stochastic Logic
(CSL) introduced in [35] is the stochastic counterpart to CTL
and permits to define complex properties. The path quantifiers

of CTL are replaced by the probability operator P . The usual
temporal operators are decorated with time intervals.

In [36], CSL has been extended by the steady state operator
S and by time unbounded versions of the temporal operators.
The basic CSL model checking algorithm is similar to that for
CTL, but now the evaluation of path formulas requires in gen-
eral the computation of a probability distribution. Depending
on the given time interval, this can be achieved by transient
analysis [37] or by solving a linear system of equations using
one of the iterative solvers. The evaluation of the steady state
operator is of course done by steady state analysis.

Reward Extensions. CSL has been extended in [38] by
special operators to trigger the computation of expectations of
instantaneous and cumulative rewards.

When excluding the S operator, the remaining CSL frag-
ment is a proper subset of the Continuous Stochastic Re-
ward Logic (CSRL) [39]. Now, the temporal operators are
additionally decorated with a reward interval. CSRL model
checking requires to compute the joint distribution of the
CTMC and the stochastic process representing the evolution
of the accumulated reward. This is much more involved than
computing transient probabilities, since the latter does not
feature the Markov property. However, there are different
algorithms to compute the joint distribution [40].

Exact. Currently, MARCIE supports model checking of
CSL as it is defined in [36] extended by the reward operators
given in [38], most of them in a multi-threaded way.

Furthermore, MARCIE implements the Markovian approx-
imation algorithm [40] and allows to check a subset of CSRL
for state rewards. However, this feature is not documented yet
and still under test.

Approximative. In our current implementation MARCIE
supports only a subset of CSL for approximative numeri-
cal analysis and simulation; unnested P-operator with time-
bounded temporal operators can be checked.

9) Parser: This component contains the parsers for the
actual Petri nets, CTL and CSL formulas, reward structures,
as well as place and transition orders. Currently, most of them
are realized using the lexical analyzer flex and the parser
generator bison, but we are going to move to the lightweight
parser generator Spirit from the boost library. For a detailed
syntax specification of all inputs we refer to [19].

III. RELATED TOOLS

One could create a long list of tools, supporting the anal-
ysis of CTMCs and related formalisms and, thus, indirectly
stochastic Petri nets as well. For the lack of space we restrict
ourselves to a very short selection from which we will choose
one tool for computational comparison with MARCIE. An
elaborated comparison of available CSL model checkers can
be found in [41], comprising explicit, symbolic and simulative
engines.

The probabilistic model checker PRISM [16] is considered
to be the “most popular and advanced tool in the field” [42].
It supports the analysis of CTMCs as well as DTMCs and
Markov Decision Processes (MDPs) by means of CSL, PCTL



and LTL. It further allows the use of CSL extensions to
compute expectations of reward measures. PRISM is based
on MTBDDs. It defines its own high level model description
language which can be easily used to define SPN specifica-
tions.

Another CSL model checker is the Markov Reward Model
Checker (MRMC) [42]. It also offers analysis capabilities for
CTMCs and related formalisms based on temporal logics. It
is the only tool which supports model checking of CSRL
formulas. MRMC uses sparse representations to encode the
state space and matrices. Particular features are the support for
state space reduction based on bisimulation and a simulative
steady state detection. MRMC supports simulative model
checking of full CSL. It requires third party tools as PRISM to
generate the actual Markov model, which results in handling
possibly huge files.

A further popular tool is SMART [15]. It offers qualitative
and quantitative analysis of GSPNs with marking-dependent
arcs and defines its own high level description language.
SMART supports CTL, but not CSL model checking, although
it is able to efficiently compute transient and steady state
probabilities. The user can choose between various explicit
and symbolic storage strategies for the state space (e.g., AVL
trees, Multi-valued Decision Diagrams (MDDs)) and for the
rate matrix (e.g., Kronecker representations, Multi-Terminal
MDDs, Edge-Valued MDDs, Matrix Diagrams). However,
some of these storage strategies force the user to obey some
modelling restrictions. The use of MDDs, which for instance
permit efficient saturation-based reachability analysis, requires
to specify a suitable place partition. SMART also implements
discrete event simulation.

All three tools can be used for simulative as well as
numerical analysis of stochastic Petri nets. None of the tools
currently supports multi-threading.

For comparison with MARCIE we decided to use PRISM.
It is easy to use and the case studies which we will consider in
the following were either already available or easy to create in
the PRISM language. To use its efficient hybrid engine does
not require to consider specific modelling restrictions as it is
the case when using, e.g., SMART’s MDD engine. Generally
it is most comparable with MARCIE. We made experiments
using PRISM’s hybrid and sparse engine. See also [12], where
we already compared PRISM and MARCIE’s predecessor
IDD-MC concerning transient analysis of biological models.

None of the mentioned tools supports the direct numerical
approximation algorithm for computing transient solutions of
stochastic models as described in II-B7 and implemented in
MARCIE. To the best of our knowledge, the tool Sabre [43] is
besides MARCIE the only publicly available implementation.
But in contrast to MARCIE, Sabre does not include any model
checking capabilities which precludes it from being considered
for tool comparison.

IV. COMPARISON

In this section we provide benchmark results to empirically
prove MARCIE’s efficiency. We concentrate on quantitative

analyses and use CSL properties to trigger the computation of
transient and steady state probabilities. We will compare our
performance results with PRISM using five different stochastic
Petri nets. Besides established CTMC benchmarks we will also
use two models from Systems Biology.

A. Case Studies
For our experiments we will use the following technical

systems.
FMS. The Flexible Manufacturing System with three ma-

chines has been published in [3]. The original model contains
immediate transitions; thus it is a GSPN. As discussed, our
exact CTMC analysis engine suffers from immediate tran-
sitions, and PRISM does not support immediate commands.
Thus we will consider a pure SPN model which has been
derived from the GSPN model by applying the elimination
rules for immediate transitions given in [2]. Furthermore, the
FSM model contains arcs with marking-dependent weights.
MARCIE does not support such arcs as they potentially
destroy the locality principle. Instead, our model simulates
the marking dependencies by additional transitions, each rep-
resenting a specific firing situation in the original model. The
FMS is scalable concerning the number of items which can
be processed by the machines. The places P1, P2 and P3
carry initially N tokens. The model can be easily scaled
be increasing the value of N . Our SPN model is limited
to N = 15 due to the explicit modelling of the marking-
dependent arcs.

Kanban. The kanban system has been used in [4] to
demonstrate efficient CTMC encoding and solution using the
Kronecker approach. The model is scalable by the initial
marking.

PSS. The SPN model of a polling server system has been
derived from that given in the PRISM case study collection
which is based on [44]. The model is scalable by the number
of stations communicating with the server. Thus scalability is
here given by the net structure, not only by the initial marking.

Additionally, we use the following models from Systems
Biology.

AKAP. This model of the AKAP scaffold-mediated
crosstalk between the cAMP and the Raf-1/MEK/ERK path-
ways has been specified and analysed using PRISM in [45].
The AKAP model is scalable by the initial marking and the
arc weights.

ANG. This model of signal transduction events involved in
the angiogenetic process has been published in [9]. The model
is scalable by the initial marking.

All Petri net models have been done with our Petri net editor
Snoopy [46] and are available on our website http://www-
dssz.informatik.tu-cottbus.de/DSSZ/Examples. There we also
provide Petri nets for further biochemical models which we
have used as benchmarks in [12, 34].

B. Experiments
In this section we will sketch the setup for the computational

experiments we made, and we will present the experimental
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Fig. 4. A Petri net model of the AKAP scaffold-mediated crosstalk. The
net consists of 18 places and 28 transitions which are connected by 108 arcs.
The grey colored places are fusion places (multiple logical occurrences of the
same place) used to achieve a clear layout.

results. All experiments were done on a 8 × 2.26 Mac Pro
workstation with 32GB RAM running Cent OS 5.5. We
restricted all experiments to a run-time of at most 12 hours.

We considered for all models different state spaces which
are shown in Table I. MARCIE’s capabilities concerning state
space generation and CTL model checking are not appropri-
ately reflected by these figures. For instance, MARCIE is able
to compute the state space for the FMS and Kanban model
up to N = 300 which means to have about 3.65 × 1028 or
2.65× 1024 states [6].

However, in this paper we focus on the quantitative analysis;
thus the feasible model size is limited by the memory effort for
the probability vectors. On our test system this would permit
to consider models as Kanban, N=10, with about 1×109 states,
depending on the used solver. For the FSM we use the SPN
model which permits a more efficient analysis as explained in
section II-B6.

All experiments were triggered by CSL formulas, which
possibly refer to model-specific reward structures. The CSL
formulas and reward structures are available on our website.

Our numerical experiments can be divided into three cate-
gories.

1) Steady State Analysis: To trigger the computation of
the steady state distribution we used either the CSL template
S=?[sp] with a model-specific state property sp or the CSL
reward template R{rs}=?[S] with a model-specific reward

TABLE I
SIZE OF THE REACHABILITY GRAPHS FOR DIFFERENT MODEL

CONFIGURATIONS. THE REACHABILITY GRAPH AND THE CTMC ARE
ISOMORPHIC IF THERE ARE NO PARALLEL TRANSITIONS. THE

REACHABILITY GRAPHS OF THE AKAP MODEL CONTAIN SUCH PARALLEL
TRANSITIONS.

model N | states | | transitions |

FMS

2 810 3,699
4 35,910 237,120
6 537,768 4,205,670
8 4,459,455 38,533,968

10 25,397,658 234,523,289
12 111,414,940 1,078,917,632
14 403,259,040 4,047,471,180

Kanban

2 4,600 28,120
4 454,475 3,979,850
6 11,261,376 115,708,992
8 133,865,325 1,507,898,700

PSS

5 240 800
10 15,360 89,600
15 737,280 6,144,000
20 31,457,280 340,787,200

AKAP

3 1,632,240 12,691,360
4 15,611,175 141,398,580
5 74,612,328 734,259,344
6 386,805,104 4,116,788,172

ANG
2 5,384 26,193
4 2,413,480 21,810,412
6 277,789,578 24,813,347,031

TABLE II
THE EVOLUTION OF THE STATE SPACE OF THE FMS MODEL GIVEN AS

SPN AND GSPN. |Sq | DENOTES THE NUMBER OF STATES WHEN
CONSIDERED COMPLETELY QUALITATIVE, I.E. IMMEDIATE TRANSITIONS
ARE NOT PRIORIZED OVER STOCHASTIC TRANSITIONS. A PRIORIZATION

OF IMMEDIATE TRANSITIONS AS IT IS THE CASE IN THE GSPN
SEMANTICS YIELDS THE SET OF REACHABLE STATES S WHICH CONSISTS

OF THE VANISHING Sv AND THE TANGIBLE St STATES.

N |Sq | |S| |Sv | |St|
2 3,444 2,202 1,392 810
4 438,600 138,060 102,150 35,910
6 15,126,440 2,519,580 1,981,812 537,768
8 248,002,785 – – 4,459,455

10 2,501,413,200 – – 25,397,658

structure rs. We used the Jacobi solver which is the default
steady state solver both in MARCIE and PRISM. Only for the
kanban system and the angiogenetic process we had to move
to Gauss-Seidel, because the Jacobi solver did not converge
within 10,000 iterations. Steady state analysis requires to
determine the reversibility of the SPN (irreducibility of the
CTMC) and, if necessary, a SCC decomposition. It turned
out that for the PSS model the computed variable order
was not the best choice for this precomputation step. The
SCC decomposition required much more time than the actual
analysis. Thus we used the plain place order.

FMS. We used transition rewards to specify and compute
the productivity of the system; see [3] for more details.

Kanban. We used transitions rewards to specify and com-
pute the throughput of the system.

PSS. We computed the steady state probability that station
1 is waiting, which gives the state property (s1 = 1)∧¬(s =
1 ∧ a = 1).



TABLE III
TOTAL RUN-TIME FOR STEADY STATE ANALYSIS INCLUDING STATE SPACE GENERATION, INITIALIZATION, REWARD COMPUTATION - IF NECESSARY, AND

PROBABILITY COMPUTATION. THE NUMBER OF REQUIRED ITERATIONS IS GIVEN IN THE COLUMNS iter. THE LAST TWO COLUMNS SHOW RESULTS OF
PRISM USING ITS HYBRID AND SPARSE ENGINE. IF POSSIBLE WE USED THE JACOBI SOLVERS. FOR THE KANBAN AND ANG MODELS WE USED THE

GAUSS-SEIDEL SOLVERS. THE NUMBER OF ITERATIONS REQUIRED BY THE GAUSS-SEIDEL SOLVERS DIFFER BETWEEN MARCIE AND PRISM BECAUSE
OF DIFFERENT VARIABLE ORDERS.

model MARCIE PRISM
N iter 1 2 4 8 iter hybrid sparse

FMS

2 378 %1s %1s %1s %1 378 2s 3s
6 1,084 59s 42s 57s 34s 1,084 41s 30s

10 1,812 1h11m15s 45m07s 30m31s 24m47s 1,812 2h25m42s 37m15s
12 2,193 6h13m53s 3h52m32s 2h26m17s 2h04m45s 2,193 – 3h32m11s
14 2,589 – – – 9h10m04s † † †

Kanban

2 48 %1s 189 2 2s
4 122 15s Gauss-Seidel 323 12s 10s
6 224 11m07s no multi-threading support 622 9m48s 6m18s
8 356 3h57m23s 999 3h27m27s 1h59m59s

PSS

10 406 %1s %1s %1s %1s 406 2s 2s
15 657 14s 9s 5s 3s 657 24s 21s
20 920 16m16s 10m58s 6m21s 3m08s 920 31m28s 26m31s

AKAP
4 1,433 21m17s 13m07s 7m04s 4m40s 1,433 17m37s 17m08s
5 1,348 1h46m52s 1h05m12s 37m39s 23m03s – – –
6 1,659 – 8h00m02s 3h53m29s 2h43m48s – – †

ANG
2 n.a. 48s n.a. 4m05s 28s
3 n.a. 1s24m55s Gauss-Seidel † † †
4 n.a. – no multi-threading support † † †

– means that the experiment was canceled after 12 hours
† means that the CTMC could not be created using the default tool settings

AKAP. We used state rewards to specify and compute the
average number of tokens on place cAMP .

ANG. We used state rewards to specify and compute the
average number of tokens on place DAG.

2) Transient Analysis: We use either the CSL template
P=?[F [t, t]sp] which computes the probability to be in a state
satisfying the model-dependent state property sp at time point
t when starting in the initial state, or the CSL reward template
R{rs}=?[I = t] which computes the expected instantaneous
reward at time point t when starting in the initial state and
considering the model specific reward structure rs. The time
parameter t was set to 1.0 for all experiments.

FMS. We computed the probability for time t to have N
tokens on place P1.

Kanban. We computed the probability for time t to have
N tokens on place x1.

PSS. We computed the probability at time t that station 1
is waiting.

AKAP. We used state rewards to specify and compute the
expected number of tokens on place cAMP at time point t.

ANG. We used state rewards to specify and compute the
expected number of tokens on place DAG at time point t.

3) Results: In Table III and IV we provide results of our
numerical experiments. For the transient analysis, MARCIE’s
IDD engine outperforms PRISM’s hybrid engine as well as
its sparse engine for increasing values of N even in the
single-threaded mode. For the steady state analysis, MARCIE
can not compete with PRISM’s Gauss-Seidel solver, while
the performance of MARCIE’s Jacobi solver lies between
PRISM’s sparse and hybrid engine, as expected without multi-
threading. An exception is the PSS model, where MARCIE

performs better in all cases.
MARCIE’s multi-threading feature reduces the computation

time for all models and all supported analysis methods,
although the actual speedup varies.
Because of space limitations we just give the total run-time and
ignore the memory consumption. A closer look at the obtained
results reveals that there are significant differences regarding
the time needed to construct the state space, to compute the
rewards, and the probability distribution or to initialize cache
data. Thus our tables only represent a very rough comparison.

Both tools can be used more efficiently when using ded-
icated options. For instance, the computed cache layer for
the FMS, which is 8, is not the best choice. A value of
12 would drastically reduce initialization time and memory
consumption. The cache initialization for N=12 takes 866
seconds when using 4 threads, while the computation of
transient probabilities takes just 583 seconds. Thus the total
run-time increases with 8 threads, although the computation
time decreases. In this case the overhead for initialization is
accompanied by too few required iterations.

4) Approximative Analysis: For the fast adaptive uni-
formization as well as the simulation we use the CSL template
P=?[F [t, t] place = N ] which computes the probability to be
in a state satisfying the model-dependent state property that
place has N token at time point t when starting in the initial
state. We used the same places as for the transient analysis.

Results. Table V shows the total run-time for transient anal-
ysis using simulation in MARCIE and PRISM. The stochastic
simulation in PRISM seems not to be optimized for simulative
model checking. The stochastic simulation greatly benefits
from multi-threading. The speedup is almost linear with the



TABLE IV
TOTAL RUN-TIME FOR TRANSIENT ANALYSIS INCLUDING STATE SPACE GENERATION, INITIALIZATION AND PROBABILITY COMPUTATION. THE NUMBER

OF REQUIRED ITERATIONS IS GIVEN IN THE COLUMN iter. THE LAST TWO COLUMNS SHOW RESULTS OF PRISM USING ITS HYBRID AND SPARSE
ENGINE.

model Marcie PRISM
N iter 1 2 4 8 hybrid sparse

FMS
8 202 2m27s 2m28s 1m51s 1m28s 3m47s 2m50s

10 202 13m11s 9m44s 7m51s 8m22s 27m39s 15m57s
12 208 55m54s 42m41s 31m56s 29m57s 2h10m47s 1h39m05s
14 208 4h07m51s 3hm35ms07s 2h48m59s 2h41m41s 8h26m38s OutOfMemory

Kanban
4 181 6s 3s 2s 2s 12s 8s
6 181 1m57s 1m34s 48s 34s 5m16s 3m09s
8 181 23m59 17m53s 9m18s 6m41s 1h08m15s 43m23s

PSS
10 377 %1s %1s %1s %1s 2s 2s
15 377 17s 7s 4s 3s 33s 17s
20 377 9m02s 5m32s 2m59s 2m06s 29m18s 14m22s

AKAP
4 1,532 25m15s 17m09s 7m49s 5m13s 52m20s 24m12s
5 1,850 2h40m14s 1h34m36s 47m54s 30m26s – –
6 2,218 – – 5h44m53s 3h49m45s † †

ANG
4 547 1m53s 1m18s 54s 44s 2m27s 7m24s
5 794 31m08s 20m50s 13m45s 11m46s 34m06s 4h25m34s
6 1,093 7h36m57s 4h39m52s 3h17m47s 3h00m16s † †

– means that the experiment was canceled after 12 hours
† means that the CTMC could not be created using the default tool settings

TABLE V
TOTAL RUN-TIME FOR SIMULATIONS DONE WITH MARCIE AND PRISM.

THE CONFIDENCE LEVEL IS 99%, THE DESIRED ACCURACY 1× 10−5 ,
WHICH LEADS TO 66, 348, 303 SIMULATION RUNS.

model N t Threads MARCIE PRISM

FMS 14 1 1 40m43s 3h24m13s
8 5m4s n.a.

Kanban 10 10 1 13m48s 2h23m58s
8 1m58s n.a.

PSS 20 1 1 4h10m4s 62h32m33s
8 31m53s n.a.

AKAP 6 1 1 2m37s 10m23s
8 25s n.a.

ANG 6 1 1 38m48s 8h26m57s
8 5m20s n.a.

number of threads.

TABLE VI
TOTAL RUN-TIME AND NUMBER OF STATES OF THE APPROXIMATED

CTMCS OF MARCIE’S FAST ADAPTIVE UNIFORMIZATION ALGORITHM.

model N t time |Sappr| |S|
FMS 14 1 29s 821,199 403,259,040

Kanban 10 10 8m46s 20,444,464 1,005,927,208
PSS 20 1 33s 296,991 31,457,280

AKAP 6 1 3s 81,657 386,805,104
ANG 6 1 42m21s 12,619,037 277,789,578

Table VI shows the size of the approximated CTMC and the
total run-times using MARCIE’s fast adaptive uniformization.
The approximation of the size of the CTMC lies between $
1% and 4.5%.

V. CONCLUSION

In this paper we presented MARCIE, a tool for qualitative
and quantitative analysis of Generalized Stochastic Petri Nets.
We gave an overview of its current features, which particularly
include symbolic CTL and CSL model checking for bounded

nets and approximative model checking of unnested time-
bounded formulas, which also works for unbounded nets. The
quantitative analyses are based on efficient solvers to compute
transient and steady state probabilities. To the best of our
knowledge, MARCIE is the first available tool offering these
features symbolically and multi-threaded.

We demonstrated MARCIE’s efficiency by presenting a bulk
of experimental results and a comparison with PRISM. The
experimental results which we presented in this paper and
in [12, 13] suggest that especially for biological networks
MARCIE is the most efficient model checking tool.

Currently we are going to extend the model checking
capabilities by full CSRL model checking based on our “on-
the-fly” engine and by simulative PLTLc [47] model checking.
Furthermore we are preparing out-of-core support and dis-
tributed symbolic computation of probability distributions.

Acknowledgements.: We would like to thank Verena Wolf
for fruitful discussions and for the support in MARCIE’s FAU
implementation.
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