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Abstract Petri nets offer a bipartite and concurrent paradigm, and consequently
represent a natural choice for modeling and analyzing biochemical networks. We
introduce a Petri net structuring technique contributing to a better understanding
of the network behavior and requiring static analysis only. We determine a clas-
sification of the transitions into abstract dependent transition sets, which induce
connected subnets overlapping in interface places only. This classification allows
a structured representation of the transition invariants by network coarsening. The
whole approach is algorithmically defined, and thus does not involve human inter-
action. This structuring technique is especially helpful for analyzing biochemically
interpreted Petri nets, where it supports model validation of biochemical reaction
systems reflecting current comprehension and assumptions of what has been de-
signed by natural evolution.

1 Motivation

Systems and synthetic biology are concerned with understanding biochemical
processes (pathways) in biological systems ranging in size from a single pathway to
a whole organism, and varying in the chosen abstraction level from gene regulatory
networks via signal transduction networks to metabolic networks.

Independently of size and abstraction level, all pathways and, therefore, their
models, too, exhibit inherently rather complex network structures. These structures
reflect the causal interplay of the basic actions and employ all the patterns well
known in computer engineering, such as sequence, branching, repetition, and con-
currency. However, opposite to technical networks, biochemical networks tend to
be very dense and apparently unstructured making the understandability of the full
network of interactions difficult and, therefore, error-prone.
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Getting a survey on the current state of knowledge about a particular pathway
requires a lot of reading and search through several data bases, including the cre-
ative interpretation of various graphical representations. These pieces of separate
understanding have to be assembled to get a comprehensive as well as consistent
knowledge representation. For this purpose, a readable and executable language
with a formal, and hence unambiguous semantics would obviously be of great help
as a common intermediate representation language. Formal models open the door to
mathematically founded analyses. The transformation from an informal to a formal
model involves the resolution of any ambiguities, which must not necessarily hap-
pen in the right way. Therefore, the next step in a sound model-based technology
should be devoted to model validation.

Model validation aims basically at increasing our confidence in the constructed
model. There is no doubt that this should be a prerequisite before raising more so-
phisticated questions, where the answers are supposed to be found by help of the
model and where we are usually ready to trust the answers we get. So, before think-
ing about model-based behavior prediction, we are concerned with model valida-
tion.

For model validation, we introduce a qualitative model as a supplementary in-
termediate step, at least from the viewpoint of the biochemist accustomed to con-
tinuous modeling only. One of the benefits of using the qualitative approach is that
systems can be modeled and analyzed without any quantitative parameters.

This model-driven perspective is equally helpful in the setting of systems biology
as well as synthetic biology. In systems biology, models help us in formalizing our
understanding of what has been created by natural evolution. So first of all, models
serve as an unambiguous representation of the acquired knowledge and help to de-
sign new wetlab experiments to sharpen our comprehension. In synthetic biology,
models help us to make the engineering of biology easier and more reliable. Mod-
els serve as blueprint for novel synthetic biological systems. Their employment is
highly recommended to guide the design and construction in order to ensure that the
behavior of the synthetic biological systems is reliable and robust under a variety of
conditions.

Computer science has generated quite a number of modeling formalisms, which
are used in the scenario sketched so far. In this paper, we apply the Petri net formal-
ism. Biochemical reaction systems and Petri nets share two distinctive characteris-
tics. Both are inherently bipartite, and both are inherently concurrent. Thus, Petri
nets seem to be a natural choice for modeling biochemical networks. Petri nets are
known to combine an intuitive and executable modeling style with mathematically
founded analysis techniques, comprising qualitative as well as quantitative ones,
complemented by reliable tool support.

This paper is based on a typical static analysis technique, the invariants. Place
and transition invariants are a popular validation technique for technical as well as
biochemical networks. One approach of acquiring a deeper understanding of the net-
work behavior consists in understanding all its basic executions, which correspond
to the minimal transition invariants. We go one step further by guiding the hierar-
chical structuring (coarsening) of a given network to support its comprehension. We
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determine a classification of the transitions into abstract dependent transition sets,
which induce connected subnets overlapping in interface places only. This classi-
fication allows a structured representation of the transition invariants by network
coarsening.

The whole approach is algorithmically defined, and thus does not involve hu-
man interaction. This structuring technique is especially helpful for analyzing bio-
chemically interpreted Petri nets, where it supports model validation of biochemical
reaction systems reflecting current comprehension and assumptions.

This paper is organized as follows. In the next section, we recapitulate the rele-
vant Petri net notions, before we motivate a biochemical interpretation of Petri nets.
Thereafter, we introduce a new structuring method, sketch the computation of its
two main features, and demonstrate the gained structuring effect by three smaller
cases studies, which are also provided on our web pages. Finally, we refer to related
work, before concluding with a short summary of the essential aspects.

2 Preliminaries

To be self-contained, we give the formal definitions of the Petri net notions relevant
for this paper. As usual, we denote the set of non-negative integers including zero
by N0, and the set of integers by Z. |S| denotes the number of elements in a set S.

To allow formal reasoning, we are going to represent biochemical networks
by Petri nets, which enjoy formal semantics amenable to mathematically sound
analysis techniques. The first two definitions introduce the standard notion of
place/transition Petri nets, which is the basic class in the ample family of Petri net
models.

Definition 1 (Petri Net, Syntax) A Petri net is a quadruple N = (P,T ,f,m0),
where

– P and T are finite sets with P ∪ T "= ∅, P ∩ T = ∅,
– f : ((P × T )∪ (T × P))→N0,
– m0 : P →N0.

Thus, Petri nets (or nets for short) are weighted, directed, bipartite graphs. The
elements of the set P are called places, graphically represented by circles, while the
elements of the set T are called transitions, represented by rectangles. The function
f defines the set of directed arcs, weighted by non-negative integers. The (pseudo)
arc weight 0 stands for the absence of an arc. The arc weight 1 is the default value
and is usually not given explicitly. A place carries an arbitrary number of tokens,
represented as black dots or a natural number. The number zero is the default value
and usually not given explicitly. m(p) yields the number of tokens on place p in the
marking m, and m0 specifies the initial marking.

We introduce the following notions and notations for a node x ∈ P ∪ T .

– •x := {y ∈ P ∪ T | f (y, x) "= 0} is the preset of x.
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– x• := {y ∈ P ∪ T | f (x, y) "= 0} is the postset of x.
– x is called input node of the net if •x = ∅.
– x is called output node of the net if x• = ∅.
– x is called boundary node of the net if it is either input or output node.

Additionally, we extend the first two notions to a set of nodes X ⊆ P ∪ T and
define the set of all pre-nodes •X := ⋃

x∈X
•x, and the set of all post-nodes X• :=⋃

x∈X x•.
Up to now, we have introduced the static aspects of a Petri net only. The behav-

ior of a net is defined by the firing rule, which basically consists of two parts: the
precondition and the firing itself.

Definition 2 (Firing Rule) Let N = (P,T ,f,m0) be a Petri net.

– A transition t is enabled in a marking m, written as m[t〉, if
∀p ∈• t : m(p)≥ f (p, t), else disabled.

– A transition t , which is enabled in m, may fire.
– When t in m fires, a new marking m′ is reached, written as m[t〉m′, with
∀p ∈ P : m′(p) = m(p)− f (p, t) + f (t,p).

– The firing happens atomically and does not consume any time.

According to this may firing rule, a transition is never forced to fire. Figuratively,
the firing of a transition moves tokens from its pre-places to its post-places, while
possibly changing the number of tokens; compare Fig. 1. Generally, the firing of a
transition changes the formerly current marking to a new reachable one, where some
transitions are not enabled anymore while others get enabled. The repeated firing of
transitions establishes the behavior of the net. The whole net behavior consists of all
possible partially ordered firing sequences (partial order semantics) or all possible
totally ordered firing sequences (interleaving semantics), respectively.

Every marking m is defined by the given token situation in all places, i.e. m ∈
N|P |

0 . All markings, which can be reached from a given marking m by any firing
sequence of arbitrary length, constitute the set of reachable markings [m〉. The set
of markings [m0〉 reachable from the initial marking is said to be the state space of a
given system. However, in this paper, we confine ourselves deliberately to analysis
techniques, which do not require the generation of the state space. So, the presented
approach works also for nets with infinite state spaces, i.e. for unbounded Petri nets.

To open the door to analysis techniques based on linear algebra (or better: dis-
crete computational geometry), we represent the net structure by a matrix, called
incidence matrix in the Petri net community and stoichiometric matrix in systems
biology. We briefly recall the essential technical terms.

Definition 3 (P-Invariants, T-Invariants) Let N = (P,T ,f,m0) be a Petri net.

– The incidence matrix of N is a matrix C : P ×T → Z, indexed by P and T , such
that C(p, t) = f (t,p)− f (p, t).

– A place vector (transition vector) is a vector x : P → Z, indexed by P (y : T →
Z, indexed by T ).
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– A place vector (transition vector) is called a P-invariant (T-invariant) if it is a non-
trivial non-negative integer solution of the homogeneous linear equation system
x · C = 0 (C · y = 0).

– The set of nodes corresponding to an invariant’s non-zero entries are called the
support of this invariant x, written as supp(x).

– An invariant x is called minimal if " ∃ invariant z : supp(z)⊂ supp(x), i.e. its sup-
port does not contain the support of any other invariant z, and the greatest com-
mon divisor of all non-zero entries of x is 1.

– A net is covered by P-invariants, shortly CPI (covered by T-invariants, shortly
CTI) if every place (transition) belongs to a P-invariant (T-invariant).

Invariants are vectors over natural numbers, which can be read as specifications
of multisets. Contrary, supports are sets, which can technically be specified as vec-
tors over Booleans, which allows the access to the ith entry by indexing.

The set X of all minimal P-invariants (T-invariants) xi of a given net is unique
and represents a generating system for all P-invariants (T-invariants). All invariants
x can be computed as non-negative linear combinations: n · x = ∑

(ai · xi), with
n,ai ∈N0, i.e. the allowed operations are addition, multiplication by a natural num-
ber, and division by a common divisor.

3 Biochemically Interpreted Petri Nets

The idea to use Petri nets for the representation of biochemical networks is rather
intuitive and has been mentioned by Carl Adam Petri himself in one of his internal
research reports on interpretation of net theory in the seventies. It has also been
used as the very first introductory example in one of the early survey papers [28].
We follow this approach; see Fig. 1.

Places usually model passive system components like conditions, species, or any
kind of chemical compounds, e.g. proteins or proteins complexes, playing the role
of precursors, products, or enzymes of chemical reactions. Occasionally, we want to
differentiate between primary and secondary compounds. The latter ones are often
assumed to be ubiquitous and available in sufficient amount.

Complementary, transitions stand usually for active system components like
atomic actions or any kind of chemical reactions, e.g. association, dissociation,
phosphorylation, or dephosphorylation, transforming precursors into products, pos-
sibly controlled by enzymes. A reversible chemical reaction is modeled by two op-
posite transitions; compare Fig. 2.

Fig. 1 The Petri net for the well-known chemical reaction r: 2H2 + O2 → 2H2O and three of
its markings (states), connected each by a firing of the transition r. The transition is not enabled
anymore in the marking reached after these two single-firing steps
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Fig. 2 Hierarchical structuring by use of macro transitions, which are drawn as two centric
squares. The flat net (left) and the hierarchical net (right) are identical—from an analysis point
of view. Both nets model a reversible reaction a ! b with its producing and consuming environ-
ment. The nodes colored in gray may be considered as logical nodes, automatically generated by
the drawing tool. They connect the transition-bordered subnet on the lower hierarchy level with its
environment on the next higher hierarchy level

The arcs go from precursors to reactions (ingoing arcs), and from reactions to
products (outgoing arcs). In other words, the pre-places of a transition correspond
to the reaction’s precursors, and its post-places to the reaction’s products. Enzymes
establish side conditions and are connected in both directions with the reaction they
catalyze – we get read arcs; compare place O2 in Fig. 6.

Arc weights may be read as the multiplicity of the arc, reflecting known stoi-
chiometries. Tokens can be interpreted as the available amount of a given species in
number of molecules or moles, or any abstract, i.e. discrete concentration level.

We adopt the following drawing conventions; compare Fig. 2.

– Input/output transitions are generally drawn as flat rectangles to highlight their
special meaning for the net behavior.

– Logical nodes (fusion nodes) are colored in gray. All logical nodes with the same
name are identical, at least from an analysis point of view. They are commonly
used for compounds involved in many reactions, e.g. secondary compounds.

– Transition-bordered subnets can be hidden in macro transitions, drawn as two
centric squares. This allows an hierarchical structuring of larger nets. We are
going to apply this technique to coarsen a given net according to its minimal
T-invariants’ inherent structure; see Sect. 4.

Invariants are a beneficial technique in model validation, and the challenge is to
check all invariants for their biological plausibility.

A P-invariant x is a non-zero and non-negative integer place vector such that
x ·C = 0; in words, for each transition it holds that: multiplying the P-invariant with
the transition’s column vector yields zero. Thus, the total effect of each transition
on the P-invariant is zero, which explains its interpretation as a token conservation
component. A P-invariant stands for a set of places over which the weighted sum
of tokens is constant and independent of any firing, i.e. for any markings m1, m2,
which are reachable by the firing of transitions, it holds that x · m1 = x · m2. In the
context of metabolic networks, P-invariants reflect substrate conservations, while
in signal transduction or gene regulatory networks P-invariants often correspond to
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the several states of a given species (protein or protein complex) or gene. A place
belonging to a P-invariant is obviously bounded, and CPI causes structural bound-
edness, i.e. boundedness for any initial marking.

Analogously, a T-invariant y is a non-zero and non-negative integer transition
vector such that C · y = 0; in words, for each place it holds that: multiplying the
place’s row with the T-invariant yields zero. Thus, the total effect of the T-invariant
on a marking is zero. A T-invariant has two interpretations in the given biochemical
context.

– The entries of a T-invariant specify a multi-set of transitions, which by their par-
tially ordered firing reproduce a given marking, i.e. basically occurring one after
the other. This partial order sequence of the T-invariant’s transitions may con-
tribute to a deeper understanding of the net behavior. A T-invariant is called fea-
sible if such a behavior is actually possible in the given marking situation.

– The entries of a T-invariant may also be read as the relative firing rates of the
transitions involved, all of them occurring permanently and concurrently. This
activity level corresponds to the steady state behavior.

The two opposite transitions modeling the two directions of a reversible reac-
tion always make a minimal T-invariant; thus, they are called trivial T-invariants.
A net which is covered by non-trivial T-invariants is said to be strongly covered by
T-invariants (SCTI). Transitions not covered by non-trivial T-invariants are candi-
dates for model reduction, e.g. if the model analysis is concerned with steady state
analysis only.

The automatic identification of non-trivial minimal T-invariants is in general use-
ful as a method to highlight important parts of a network, and hence aid its compre-
hension by biochemists, especially when the entire network is too complex to easily
comprehend.

We are especially interested in a network’s input/output behavior, which we are
going to characterize by input/output T-invariants (I/O T-invariants), i.e. such T-

Fig. 3 The four nets on the left are each covered by one minimal T-invariant. Invariants can con-
tain any structures (from left to right): cycles, forward/backward branching transitions, forward
branching places, backward branching places. Generally, invariants overlap, and in the worst-case
there are exponentially many of them; the net on the far-right has 24 T-invariants
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invariants, involving input and output transitions. These special T-invariants can of-
ten be read as alternative, self-contained pathways within a given network under
consideration.

A minimal P-invariant (T-invariant) defines a connected subnet, consisting of its
support, its pre- and post-transitions (pre- and post-places), and all arcs in between.
There are no structural limitations for such subnets induced by minimal invariants,
compare Fig. 3, but they are always connected, however, not necessarily strongly
connected. These minimal self-contained subnets may be read as a decomposition
into token preserving or state repeating modules, which should have an enclosed
biological meaning.

Minimal invariants generally overlap; the combinatorial effect causes an explo-
sion of the number of minimal invariants. There are exponentially many of them in
the worst-case; compare Fig. 3, far-right. Therefore, we are going to apply a struc-
tured representation of a given set of invariants.

4 Structuring Method

The following discussion concentrates on T-invariants. Likewise, the presented tech-
nique can be applied to P-invariants due to the given symmetry of the two notions.

We define a dependency relation based on a set of minimal T-invariants. It can be
equally applied to the full set of all minimal T-invariants as well as to a subset, e.g.
the set of non-trivial T-invariants.

Definition 4 (Dependency Relation) Let N = (P,T ,f,m0) be a Petri net, and let
Y denote a set of minimal T-invariants y of N . Two transitions i, j ∈ T depend on
each other, i 01 j for short, if

∀y ∈ Y : i ∈ supp(y)⇔ j ∈ supp(y).

This is an abstract dependency, defined on the T-invariants’ support only. Depen-
dent transitions appear always together in the given set of minimal T-invariants. The
drop out of one transition prevents the whole set of transitions depending on each
other to accomplish their common function.

The dependency relation fulfills the following properties:

– reflexivity: i 01 i;
– a transition depends on its own.
– symmetry: i 01 j ⇔ j 01 i;

the dependency of i on j implies the dependency of j on i, and vice versa.
– transitivity: i 01 j ∧ j 01 k⇒ i 01 k;

if i depends on j , and j depends on k, then i depends also on k.

Thus, it is an equivalence relation in the transition set T , leading to a partition
of T . We call the equivalence classes Ai with

Ai ⊆ T ∧∪Ai = T ∧ ∀i, j : i "= j ⇒Ai ∩Aj = ∅
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maximal abstract dependent transition sets (ADT sets), and it holds

∀Ai, ∀y ∈ Y : Ai ⊆ supp(y)∨Ai ∩ supp(y) = ∅.

ADT sets can be read as the smallest biologically meaningful functional units
(building blocks). Contrary to T-invariants, which generally overlap, ADT sets in-
duce by definition subnets overlapping in interface places pif ∈ PIF only, with

PIF =
⋃

∀i,j,i "=j

(•Ai ∪Ai
•)∩ (•Aj ∪Aj

•).

These subnets represent a possible structural decomposition of biochemical net-
works into smaller subnets. Notably, the decomposition is based on statically decid-
able properties only.

Following the idea of hierarchical structuring of larger networks, we are going
to hide building blocks within macro transitions. However, ADT sets are not nec-
essarily connected, as we will see in Sect. 6. Hence, a further decomposition into
connected ADT sets is generally needed, possibly according to primary compound
flow only, i.e. neglecting connections by secondary compounds, and we get non-
maximal ADT sets.

Having a decomposition of the transition set T into ADT sets inducing connected
subnets, we are able to determine the interface places, and to coarsen automatically
a given net according to the minimal T-invariants’ inherent structure:

– macro transitions abstract from connected ADT sets, and
– places on the hierarchy’s top level correspond to the interface between the ADT

sets.

Then the coarse net structure gives a structured representation of all T-invariants,
which may contribute to a better understanding of the net behavior. Moreover, the
coarse net structure allows to identify sensitive net parts, i.e. interface places; the
knock-out of which would switch off a significant part of the whole network or even
prevent any output.

Maximal ADT sets support also the efficient design of wetlab experiments by
identifying minimal sets of observation points providing coverage of the whole net-
work: each maximal ADT set needs obviously one observation point only.

Finally, ADT sets are likely to be useful for automatic layout algorithms,
whereby the differentiation between primary and secondary compounds might be
supportive.

5 Computation

For the algorithmic-oriented minds, we sketch the computation of the two main
features of which our structuring approach is made.
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5.1 Computation of Invariants

Technically, we need to solve a homogeneous linear equation system over non-
negative integers. This restriction of the data space establishes—from a strong
mathematical point of view—a challenge. There is no closed formula to compute
the solutions. However, there are algorithms—actually, a class of algorithms—
constructing the solution (to be precise: the generating system for the solution space)
by systematically considering all possible candidates.

This algorithm class has been repetitively re-invented over the years. Thus, these
algorithms come along with different names. But a closer look always reveals the
same underlying principle. All these versions may be classified as “positive Gauss
elimination”; the incidence matrix of the Petri net is systematically transformed to
a zero matrix by suitable matrix operations.

Before we start, an auxiliary matrix is added to the incidence matrix to log, which
matrix operations have been done. The auxiliary matrix is always a quadratic matrix.
It is initialized by the identity matrix (diagonal is set to 1, else 0), and it is added to
the right for the computation of the P-invariants (then it is a quadratic matrix over
the places), or it is added below the incidence matrix for the computation of the T-
invariants (then it is a quadratic matrix over the transitions). The matrix operations,
compare Algorithm 1, are always applied to the composed matrix, consisting of the
incidence matrix and the auxiliary matrix.

The algorithm terminates, when all columns in the incidence matrix are zero. It
needs at most as many iterations of the outer loop as we have transitions, because
each iteration makes one column to zero.

Algorithm 1 Computation of P-invariants
input incidence matrix C, extended by auxiliary matrix;

while there are non-zero columns in C do
pick one non-zero column i in C;
for all pairs of rows with unequally signed entries in this column i do

add a new row, which is the smallest possible linear combination of this
pair, making the matrix entry in this column i to zero;

end for;
delete all old rows, i.e. those which have been used in creating these linear
combinations;
assert i is now a zero column;
assert if we had n negative entries and p positive entries in column i,

then the number of rows changes by n · p− (n + p)

end while;
assert if there is a solution, the incidence matrix is now zero;
assert all rows in the auxiliary matrix are P-invariants,

among them are all minimal P-invariants;
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The challenge in implementing this basic algorithm is twofold. First, we need
to eliminate efficiently all non-minimal P-invariants. Second, because the algorithm
has to consider all possible candidates, all possible linear combinations are con-
structed, blowing up the number of rows in the intermediate data structure. There
are heuristics trying to minimize this effect, e.g. to pick a column, for which we
get less new rows. However, as we know, heuristics never work fine for all possible
cases. To give some figures: It might be that there are several millions of rows at an
intermediate state of the algorithm, and at the end there are just around 100 left.

It is straightforward to adjust this algorithm to compute T-invariants; or the inci-
dence matrix is transposed—P-invariants of the transposed net are the T-invariants
of the original net.

5.2 Computation of Dependent Sets

The algorithm is rather straightforward and easily explained. Let us recall, T-
invariants are technically transition vectors over natural numbers, i.e. they have as
many components as there are transitions in the net, usually given as column vec-
tors. Likewise, their supports can be given as transition vectors over Booleans with
true if the transition belongs to the set, and false else; again written as column vec-
tors. Let us arrange these column vectors of all T-invariants or of their supports side
by side. We get a matrix Tinv with as many rows as we have transitions and as many
columns as we have T-invariants.

The dependency relation can now be rephrased in terms of this matrix Tinv: two
transitions dependent on each other, i.e. they always occur together, if their rows
are identical. Maximal dependent transition sets are now defined by maximal sets of
identical rows. To compute them, we execute Algorithm 2.

The algorithm terminates when all rows have been assigned. Because we have a
finite set of transition, the number of rows is finite, too. In the worst case, the outer

Algorithm 2 Computation of maximal dependent transition sets
input matrix Tinv;

while there are non-assigned rows do
create a new set s;
let i be the first index of a row, which has not been assigned to a set;
mark row i as assigned, and put i into s;
for all non-assigned rows j do

if rows i, j are identical, i.e. Tinv(i,∗) = Tinv(j,∗)
then j belongs to the same set as i: mark j as assigned, and put j into s

end if
end for;
assert s specifies a maximal ADT set;

end while
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loop is entered as often as there are transitions. Then each transition builds its own
set.

6 Case Studies
We present deliberately three smaller case studies, allowing to be easily understood.

6.1 Glycolysis

We start with one of the standard examples of metabolic networks, the combined
glycolysis and pentose phosphate pathway in erythrocytes (red blood cell). We use
a version based on [38], which is also elaborated in [19]. The network defines the
various reactions occurring in the cell under heavy energy load, such as in brisk mus-
cle activity. Glucose serves as precursor, and Lactate as product, involving several
secondary compounds (ATP, ADP, NADH+, NADH, Pi) in the stepwise conversion
process; compare Fig. 4.

There are three minimal T-invariants, which we give in a short-hand notation,
enumerating the non-zero entries only:

y1 = (p_Gluc, 2 · p_ADP, 2 · p_Pi,

r9, r10, r11, r12, r13, 2 · r15, 2 · r16, 2 · r17, 2 · r18, 2 · r19, 2 · r20,

2 · c_Lac, 2 · c_ATP),

y2 = (3 · p_Gluc, 5 · p_ADP, 5 · p_Pi,

3 · r9, 6 · r1, 6 · r2, 3 · r3, 2 · r4, r5, r6, r7, r8,

2 · r11, 2 · r12, 2 · r13, 5 · r15, 5 · r16, 5 · r17, 5 · r18, 5 · r19, 5 · r20,

5 · c_Lac, 5 · c_ATP),

y3 = (r13, r14).

The net is CTI, however, not SCTI, because r14 is involved in a trivial T-invariant
only. Considering the two non-trivial minimal T-invariants, y1 and y2, we find four
maximal ADT sets. The first set contains the intersection of both T-invariants, com-
prising almost the whole glycolysis

A = supp(y1)∩ supp(y2)

= {p_Gluc, p_ADP, p_Pi,

r9, r11, r12, r13, r15, r16, r17, r18, r19, r20,

c_Lac, c_ATP}.

The knock-out of one of the transitions in A switches off both non-trivial T-
invariants. The next two sets contain those transitions, which are specific to one



Understanding Network Behavior by Structured Representations of Transition Invariants 379

Fig. 4 The Petri net and its coarse structure for the combined glycolysis and pentose phosphate
pathway in erythrocytes. The layout of the flat net mimics the hypergraph given in [38]. Nodes
colored in gray in the flat net are logical (fusion) nodes. Input and output transitions are drawn as
flat rectangles. The two pathways highlighted in the coarse net are: (a) glycolysis, and (b) pentose
phosphate pathway

of the two T-invariants. The specific transition of the T-invariant y1 belongs to the
glycolysis

B = supp(y1)− supp(y2)

= {r10},

and the specific transitions of the T-invariant y2 cover the pentose phosphate path-
way

C = supp(y2)− supp(y1)

= {r1, r2, r3, r4, r5, r6, r7, r8}.
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The remaining transition belongs to a trivial T-invariant only; it builds an (pseudo)
ADT set on its own. This transition does not contribute to the steady state behavior
of the two non-trivial T-invariants.

D = T− supp(y1)− supp(y2)

= {r14}

Thus, the main building blocks of the Petri net, and by this way of the underlying
biochemical network, are represented by the first three ADT sets, each defining a
connected subnet. The two subnets, describing the two pathways, are defined by the
union of the first ADT set with the second or third one, respectively. However, if
we neglect the connectivity established by secondary compounds, the ADT set A

breaks down into two subsets:

A1 = {p_Gluc, r9}, A2 = A−A1,

which are connected according to the primary compound flow, however, not maxi-
mal anymore.

We obtain the coarse network structure as given in Fig. 4, lower part, highlight-
ing the structuring principle inherent in the non-trivial minimal T-invariants. Each
macro transition stands for a connected subnet defined by a set of transitions, occur-
ring together in all non-trivial minimal T-invariants.

In this example, each elementary (loop-free) macro transition sequence in the
coarse net structure corresponds to a non-trivial minimal T-invariant of the whole
network. There are two such sequences:

y1 = (A1;B;A2),

y2 = (A1;C;A2),

sharing the beginning and the end. Thus, the two I/O T-invariants y1, y2 are now
represented by I/O macro transition sequences. The places shown in the coarse net
structure are the boundary places of the subnets, building the interface between the
subnets. Please note, only the primary compound flow is represented here.

6.2 Apoptosis

The term apoptosis refers to the genetically programmed cell death, which is an es-
sential part of normal physiology for most metazoan species. Disturbances in the
apoptotic process may lead to various diseases. The signal transduction network of
apoptosis governs complex mechanisms to control and execute programmed cell
death, which are—by the time being—not really well understood. A variety of dif-
ferent cellular signals initiate activation of apoptosis in distinctive ways, depending
on the various cell types and their biological states. We consider here a core model
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Fig. 5 The Petri net and its coarse structure for a core model of the apoptosis. The layout of the
flat net is inspired by the graphical scheme given in [27]. The three pathways highlighted in the
coarse net are: (a) the Fas receptor pathway, (b) the pathway induced by intrinsic apoptotic stimuli,
and (c) the cross-talk pathway. The ADT sets C1 and C2 are involved in all three pathways

of [16], which is based on [27], comprising the pathways induced by the Fas recep-
tor and the intrinsic apoptotic stimuli, as well as the cross-talk in between; compare
Fig. 5.
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There are three minimal T-invariants, covering the net:

y1 = (p1,p2,p3,p8,p9,p10,

r1, r2, r3, r4,

c1, c2, c3, c4),

y2 = (p4,p5,p6,p7,p8,p9,p10,

r3, r4, r7, r8, r9, r10, r11, r12, r13,

c1, c2, c3, c4),

y2 = (p1,p2,p3,p5,p6,p7,p8,p9,p10,p11,

r1, r3, r4, r5, r6, r9, r10, r11, r12, r13,

c1, c2, c3, c4).

There are no trivial T-invariants; so, CTI implies SCTI. We consider all minimal
T-invariants, and we get six maximal ADT sets:

A = {p1,p2,p3, r1},
B = {r2},
C = {p8,p9,p10, r3, r4, c1, c2, c3, c4},
D = {p4, r7, r8},
E = {p5,p6,p7, r9, r10, r11, r12, r13},
F = {p11, r5, r6}.

Notably, the ADT set C is involved in all minimal T-invariants; so, it is vital
for the whole network. This set does not induce a connected subnet; therefore, we
decompose it into two connected subsets:

C1 = {p9,p10, r3, r4, c1, c2, c3, c4},
C2 = {p8}.

Consequently, C1 and C2 are not maximal ADT sets anymore. Using these seven
ADT sets, we get the coarse net structure as given in Fig. 5, lower part. The three
pathways are clearly distinguishable, and—we claim—much better readable than
in the flat net. In this example, each minimal I/O T-invariant is represented by
a partially ordered I/O macro transition sequence in the coarse net structure (the
sign + stands for ‘unordered’, i.e. concurrent macro transitions):

y1 = (A + C2;B;C1),

y2 = (C2 + D;E;C1),

y3 = ((A;F) + C2;E;C1).
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6.3 Hypoxia

Oxygen is an essential and vital element for the survival of organisms. Lower oxy-
gen content, termed hypoxia, arises under pathophysiological conditions. When
there is an imbalance of oxygen content, the organism adapts by restoring normal
oxygen content through activation of various genetic and metabolic pathways to
compensate for the imbalance. One of the well-studied molecular pathways acti-
vated under hypoxia condition is the Hypoxia Induced Factor (HIF) pathway re-
sponsible for regulating oxygen-sensitive gene expression. Continuous models in
the style of ordinary differential equations (ODEs) have been proposed in [21] and
[51]. The Petri net given in Fig. 6 has been derived from these ODEs in order to
highlight the ODEs’ inherent structure. Reading the given qualitative Petri net as
a continuous Petri net, whereby all transitions firing rates follow the mass action
kinetics, generates exactly the original ODEs.

Here, we confine ourselves to the very first step—understanding the essential net-
work behavior. We start with the computation of the minimal T-invariants. Besides
the expected seven trivial T-invariants for the seven reversible reactions,

y1 = (r3, r4), y2 = (r5, r6), y3 = (r12, r13),

y4 = (r15, r16), y5 = (r18, r19), y6 = (r21, r22),

y7 = (r29, r30),

there are three non-trivial ones:

y8 = (r1, r2),

y9 = (r1, r12, r14, r18, r20),

y10 = (r1, r3, r15, r17, r18, r20, r22).

Please note, (r1, r2) is not considered to be a trivial T-invariant due to its rel-
evance for the input/output behavior. Determining the maximal ADT sets over all
T-invariants yields 17 sets, 15 of them contain just one transition, and the remaining
two are {r5, r6} and {r29, r30}, i.e. they correspond to those two trivial T-invariants,
the transitions of which are not involved in any of the non-trivial T-invariants. Ne-
glecting the trivial T-invariants in the computation of the maximal ADT sets yields
the much more interesting result:

A = {r1}, B = {r2}, C = {r12, r14}, D = {r18, r20},
E = {r3, r15, r17, r22},

and the pseudo ADT set, containing all remaining transitions of the net, not con-
tributing to the non-trivial T-invariants. The maximal ADT sets A–E induce con-
nected subnets, and we get the coarse net structure as given in Fig. 6, lower part.
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Fig. 6 The Petri net and its coarse structure (when neglecting the trivial T-invariants) for the hy-
poxia response network based on the ODEs given in [21] and [51]. The three pathways to degrade
HIF (S3) highlighted in the coarse net are: (a) direct degradation by r2, (b) degradation not requir-
ing S4, and (c) degradation requiring S4. The knock-out of S12 interrupts both (b) and (c)

The three non-trivial T-invariants are represented by the three macro transition se-
quences:

y8 = (A;B),

y9 = (A;C;D),

y10 = (A;E;D).

7 Tools

The case studies have been done using Snoopy [18, 45]—a tool to design and ani-
mate or simulate hierarchical graphs, among them the qualitative Petri nets as used
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in this paper. Snoopy provides export to various analysis tools as well as import and
export of the Systems Biology Markup Language (SBML) [13].

The T-invariants, ADT sets and their decomposition into connected subnets have
been computed with the Petri net analysis tool Charlie [3]. To support result evalua-
tion, node sets, as specified by T-invariants or ADT sets, can be visualized (colored)
in Snoopy.

The automatic derivation of the hierarchical Petri net showing the coarse net
structure is subject of a running student’s project.

The data files of the case studies and the analysis results are available at
www-dssz.informatik.tu-cottbus.de/examples/coarsening.

8 Related Work

Please note, the following remarks are not meant to be exhaustive, but to give the
interested reader some suggestions where to continue reading.

Petri nets, as we understand them today, have been initiated by concepts proposed
by Carl Adam Petri in his Ph.D. thesis in 1962 [33]. The first substantial results
making up the still growing body of Petri net theory appeared around 1970. Initial
textbooks devoted to Petri nets were issued in the beginning of the 80s [34, 39, 47].
General introductions into Petri net theory can be found, for example, in [1, 6, 28,
48]. An excellent textbook for theoretical issues is [36]. The text [7] might be useful,
if you just want to get the general flavor in reasonable time.

Petri nets have been deployed for technical and administrative systems in nu-
merous application domains since the mid-70s. The deployment in systems biology
has been first published in [17, 38, 40]. Recent surveys on applying Petri nets for
biochemical networks are [2, 26], offering a rich choice of further reading pointers,
among them numerous case studies applying various types of Petri nets to biochem-
ical networks, comprising gene regulatory networks, signal transduction networks,
metabolic networks, or combinations of them. The majority of these papers deal
with one Petri net type only, mostly quantitative Petri nets such as stochastic, contin-
uous, or hybrid Petri nets. A careful qualitative analysis of the combined glycolysis
pentose phosphate pathway is exercised in [19]. A framework integrating qualita-
tive, stochastic and continuous Petri nets into a step-wise modeling and analysis
process is demonstrated by a running example each in [11, 12, 14].

P- and T-invariants are well-known concepts of Petri net theory since the very
beginning [22]. There are corresponding notions in systems biology, called chemical
moieties or conservation relations [25, 46], and elementary modes [43] or extreme
pathways [44], which are elaborated in the setting of biochemical networks in [30].
In order to reduce the generating system of the solution space, generic pathways
(minimal metabolic behavior) have been proposed, which are especially helpful, if
there are plenty of reversible reactions [23, 24]. For biochemical systems without
reversible reactions, the notions T-invariants, elementary modes, extreme pathways,
and generic pathways coincide.

http://www-dssz.informatik.tu-cottbus.de/examples/coarsening
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The efficient computation of invariants has been repeatedly examined; for some
of the earlier papers, see, e.g. [5, 31, 49], for modular computational approaches,
see [4, 32, 52].

Invariants have been applied for validation and verification of Petri net mod-
els in many ways. Invariant-based model validation of technical or administrative
systems—especially in the context of P-invariants— is one of the standard Petri net
techniques; their use to check model consistency is straightforward. The introduc-
tory textbooks [29, 39] give examples how P-invariants can be used in mathematical
reasoning to prove certain model properties.

The model validation of biochemical networks by help of T-invariants is demon-
strated in [15] by three case studies, comprising metabolic as well as signal trans-
duction networks, one of them represented as colored Petri net. The comprehensive
textbook [30] is focused on the stoichiometric matrix and related evaluation tech-
niques of reconstructed biochemical networks. It is also a good entry point for the
growing body of related literature in systems biology.

The partial order run of I/O T-invariants is considered in [9, 10] to gain deeper in-
sights into the signal response behavior of signal transduction networks. T-invariants
are used in [19] to derive adequate environment behavior, transforming an open sys-
tem into a closed one, in [8] for the identification of functional modules by clustering
techniques, and in [37] to obtain time constraints reflecting the steady state behavior.

Finally, a bit of history. The idea to decompose T-invariants into sub-T-invariants
is rather intuitive and has already been used in an informal manner in [20] in order
to support the validation process for a metabolic network of the potato tuber. The
concept of maximal sets of dependent transitions has been introduced in [41] and
implemented in Perl to validate the mating pheromone response pathway in Saccha-
romyces cerevisiae. These results are published in [42], which also gives a formal
definition of the notion called Maximal Common Transition set (MCT-set), which
corresponds to maximal abstract dependent transition sets as introduced in our pa-
per. A generalization of MCT-sets is elaborated in [50], comprising also the foun-
dation for the structuring approach presented in our paper. That is why we adopt the
naming convention introduced there. The crucial point for our application scenario
is that we generally need a further decomposition of maximal ADT sets into ADT
sets inducing connected subnets, which are consequently not maximal anymore.

While writing this paper, and especially compiling this section, we became aware
of the notions perfectly/partially/directionally correlated reaction sets, abbreviated
by co-sets (which would cause confusion in the Petri net community). They are usu-
ally introduced verbally as well as by examples; see, e.g. [30]. However, partially
correlated reaction sets seem to correspond to (maximal?) abstract dependent tran-
sition sets, and perfectly correlated reaction sets to (maximal?) dependent transition
sets (not discussed in our paper; see [50] for details). The authors advocate cor-
related reaction sets for hierarchical thinking in network biology and the unbiased
modularization of biochemical networks, and confirm our observation that these sets
“can include non-obvious groups of reactions and differ from groupings of reactions
based on a visual inspection of the network topology” [35]. There is no better way
to conclude this section.
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9 Summary

Petri nets provide a concise, executable, and formal modeling paradigm, allowing a
unifying view on knowledge originating from different sources, which are usually
represented there in various, sometimes even ambiguous styles. The derived models
can be validated by checking T-invariants for biological interpretation.

We have presented a structuring technique contributing to a better understanding
of the network behavior and requiring static analysis only. The state space is never
constructed, thus the technique works even for systems with infinite state spaces,
i.e. unbounded Petri nets.

The key notions are T-invariants and ADT sets. Minimal T-invariants induce al-
ways connected subnets, which generally overlap. Maximal ADT sets induce al-
ways subnets, overlapping in interface places only, but which are not necessarily
connected. We determine a classification of the transitions into ADT sets, inducing
connected subnets.

This classification defines a structural decomposition into subnets, which can be
read as smallest biologically meaningful functional units. Connected ADT sets can
be hidden in macro transitions. The derived coarse network provides a structured
representation of the given set of minimal T-invariants, and may serve as a short-
hand notation. This technique works equally for P-invariants.

The whole approach is algorithmically defined and does not require human inter-
action. However, the computation of all minimal T-invariants has to be accomplished
first, and in the worst-case there are exponentially many of them.

The proposed structuring technique does not rely on the given interpretation of
Petri nets. Nevertheless, it seems to be specifically helpful for analyzing biochem-
ically interpreted Petri nets, where it supports the validation of models formalizing
our current understanding of what has been created by natural evolution.

In this paper, we have focused on model validation by means of qualitative mod-
els, because it is obviously necessary to check at first a model for consistency and
correctness of its biological interpretation before starting further analyses, aiming in
the long-term at behavior prediction by means of quantitative models. The expected
results—justifying the additional expense of preliminary model validation—consist
in concise, formal and, therefore, unambiguous models, which are provably self-
consistent and more likely to reflect adequately the modeled reality.
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