
A Comparative Study of Stochastic Analysis Techniques

Monika Heiner
Computer Science Department

BTU Cottbus, Germany

monika.heiner@tu-cottbus.de

Christian Rohr
Magdeburg Centre for Systems Biology (MaCS)

Magdeburg, Germany

rohr@mpi-magdeburg.mpg.de

Martin Schwarick
Computer Science Department

BTU Cottbus, Germany

ms@informatik.tu-cottbus.de

Stefan Streif
Magdeburg Centre for Systems Biology (MaCS)

Magdeburg, Germany

streif@mpi-magdeburg.mpg.de

ABSTRACT
Stochastic models are becoming increasingly popular in Sys-
tems Biology. They are compulsory, if the stochastic noise
is crucial for the behavioural properties to be investigated.
Thus, substantial effort has been made to develop appropri-
ate and efficient stochastic analysis techniques. The impres-
sive progress of hardware power and specifically the advent
of multicore computers have ameliorated the computational
tractability of stochastic models. We report on a compar-
ative study focusing on the three base case techniques of
stochastic analysis: exact numerical analysis, approximative
numerical analysis, and simulation. For modelling we use
extended stochastic Petri nets, which allows us to take ad-
vantage of structural information and to complement the
stochastic analyses by qualitative analyses, belonging to the
standard body of Petri net theory.

1. MOTIVATION
Biochemical systems are inherently governed by stochas-

tic laws. Consequently, stochastic models are an adequate
choice for their thorough investigation. But due to the com-
putational expense for their analysis, the considerations are
often restricted to the averaged case and continuous models
are used instead. However, stochastic models are unavoid-
able if the stochastic noise is crucial for the behavioural
properties to be investigated.

In the light of this demand, substantial effort has been
made to develop appropriate stochastic analysis techniques
and to implement them by sophisticated data structures and
efficient algorithms. The impressive progress of hardware
power and specifically the advent of multicore computers
have stirred new hope for the computational tractability of
stochastic models. We performed a comparative study to
characterize the current state with focus on the three base
case techniques of stochastic analyses.

• Exact numerical analysis considers the complete

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

CMSB ’10, September 29 – October 1, Trento, Italy

Copyright 2010 ACM 978-1-4503-0068-1/10/09 ...$10.00.

set of reachable states (state space). This requires gen-
erally finite state spaces. Time-bounded as well as
time-unbounded properties can be determined.

• Approximative numerical analysis neglects states
below a specified probability threshold. Thus, only a
subset of all reachable states is constructed, which also
works for infinite state spaces. Time-bounded proper-
ties can be approximated with the chosen accuracy.

• Simulation generates a finite number of finite random
walks through the state space. This double approxima-
tion does not care about the size of the state space, but
is restricted to time-bounded properties.

For modelling we use stochastic Petri nets (SPN), which
allows us to take advantage of structural information and to
complement the stochastic analyses by qualitative analyses,
belonging to the standard body of Petri net theory [HGD08].
We employ a toolkit consisting of the modelling tool Snoopy
[RMH10], providing also approximative numerical analysis
and simulation, the qualitative analysis tool Charlie [Fra09],
and the model checker IDD-MC which outperforms compa-
rable tools as demonstrated in [HST09, SH09].

This paper is organised as follows. We start off with an
overview on the main features of our modelling language. In
Section 3 we recall the basic principles of the three base case
techniques, discuss some implementation issues, specifically
the parallelization, and give their individual pros and cons.
In Section 4 we compare the techniques in terms of efficiency
by checking temporal queries against three stochastic mod-
els of our benchmark testsuite. We summarize the lessons
learnt from our computational experiments in a couple of
user guidelines. Finally, we refer briefly to some related work,
before concluding with an outlook on future directions.

The main contributions of our paper are:

• presentation of the first toolkit supporting the three
base case techniques, including parallelized exact nu-
merical analysis and parallelized simulation,

• first comparative study of the three base case tech-
niques of stochastic analysis, characterizing the current
state of tractability,

• user guidelines, helping specifically the uninitiated rea-
der to navigate through stochastic analysis techniques,

• identification of the potential to enhance capabilities
and performance of stochastic analyses.

96

2. MODELLING WITH SPN
We assume basic understanding of standard Petri nets. To

be self-contained we recall incrementally the main aspects of
extended stochastic Petri nets relevant for this paper.

A biochemically interpreted Petri Net PN is a 4-tuple
(P, T, f, s0). As usual, P = {p1, p2, . . . pm} denotes the set of
places, modelling the biochemical species, T = {t1, t2, . . . tn}
the set of transitions, modelling the biochemical reactions,
f : ((P × T) ∪ (T × P)) → N the arc weight function, and
s0 : P → N the initial state (marking), defining the initial
tokens on each place. The state of a Petri net can change
by the firing of transitions. The set of all states s

� ∈ N|P |,
reachable from s0 by the firing of a transition word w ∈ T

∗,
written as s0

w→ s
�, builds the state space and is denoted

with S. For more details see [HGD08].
Stochastic Petri Nets SPN build on PN , but transi-

tions have an exponentially distributed firing delay, char-
acterized by the firing rate λ. The firing rates are typi-
cally transition-specific and state-dependent and defined by
propensity (hazard) functions. We denote the propensity
function for the transition tj with hj . We deal with bio-
logically interpreted stochastic Petri nets; thus we consider
besides arbitrary arithmetic functions specifically propen-
sity functions representing mass action semantics and level

interpretation semantics. All these functions have in com-
mon that the domain is restricted to the pre-places of the
corresponding transition; see [GHL07].
Additionally, there are five special arc types: read, in-

hibitor, equal, reset, and modifier arc. They always go from
a place to a transition. The first three arcs establish addi-
tional side conditions for the enabledness of a transition; but
upon firing, the marking on the tested place is not changed.
Contrary, the reset arc does not influence the enabledness,
but upon firing all tokens on the tested place are removed.
The modifier arc does neither restrict the enabledness nor
does it change the tokens upon firing. But the firing rate
may depend on the current marking of the tested place.
Special arcs enhance the modelling comfort, but bring the

Turing power (with exception of the read and modifier arcs),
which destroys the general decidability of non-trivial be-
havioural properties. In bounded models, special arcs can
be simulated by standard arcs and some kind of unfolding
of the tested places. However, this might lessen the anal-
ysis efficiency as discussed in [SH09]. Special arcs do not
cause any trouble for dynamic, i.e. state-space-related anal-
ysis techniques. The special arcs as supported in our toolkit
do not destroy the locality principle, and modifier arcs have
actually been introduced to keep the locality, which is cru-
cial for the efficiency of our analysis tools. For more details
see [HST09, RMH10].
Generalised Stochastic Petri Nets GSPN build on

SPN enriched by immediate transitions, which have a zero
firing delay. Thus, they fire immediately after getting en-
abled and always prior to stochastic transitions. Conse-
quently, getting enabled and the firing itself coincide, if not
prevented by another competing immediate transition. A
cyclic system behaviour involving only the firing of immedi-
ate transitions corresponds to an infinite behaviour without
time progress – we get a new type of modelling fault, the
time deadlock. Immediate transitions may help to avoid stiff
systems by using them for transitions with extremely high
rates (non-significant delay) compared to the other transi-
tions in the system.

Extended Stochastic Petri Nets XSPN build on
GSPN enriched by deterministically timed transitions,
which come in two flavours.

Deterministic transitions fire after a deterministic firing
delay. The delay is always relative to the time point where
a transition gets enabled. Deterministic transitions may be
useful to reduce networks, e.g. by replacing a linear sequence
of stochastic transitions by one deterministic transition with
the delay set to the sum of the expectation values of the
transition sequence.

Scheduled transitions fire according to a schedule specify-
ing absolute time points of the simulation time. A sched-
ule can specify just a single time point, or equidistant time
points within a given interval, triggering the potential firing
(if the transition is enabled) once or periodically. They sup-
port the straightforward modelling of wet-lab experiment
scenarios. The core model can be disturbed at well-defined
time points as it is done experimentally with the actual bio-
logical system under investigation in the wet-lab. Scheduled
transitions can be simulated by net components deploying
immediate and deterministic transitions, see [HLGM09].

There is a standard firing rule, applying equally to all
XSPN transition types; specifically, a transition may lose
its enabledness while waiting for the delay to expire, and the
firing itself does never consume time.

SPN s enjoy the Markovian property; thus, their se-
mantics is defined by a Continuous Time Markov Chain
(CTMC). The semantics of GSPN can still be reduced to
CTMC, while the unrestricted use of deterministic transi-
tions in XSPN destroys the Markovian property [Ger01].

Petri nets are famous for their graphical representation,
but can equally be specified in a textual style. Snoopy sup-
ports the design of larger nets by logical nodes (connecting
separated net parts) and macro nodes (defining hierarchical
subnets). The graph structure may contribute to the under-
standing of the network.

!"#$%&"' !()*

!"#$%&"'+!()*

,!(--

.,(--+,!(!"#$%&"'+!()*+,!(-- !()*-+!*

.,(-- ,!(!()*- !*

'$ '/

'0 '1

'2 '3 '4 '$5'6

'7
'$$

Raf1Star + RKIP
r1,r2↔ Raf1Star RKIP

Raf1Star RKIP + ERKpp
r3,r4↔ Raf1Star RKIP ERKpp

Raf1Star RKIP ERKpp
r5→ Raf1Star + ERK + RKIPp

ERK + MEKpp
r6,r7↔ MEKpp ERK

r8→ ERKpp + MEKpp

RKIPp + RP
r9,r10↔ RKIPp RP

r11→ RKIP + RP

Figure 1: Petri net for one of our benchmarks (ERK)
together with its textual description by a set of re-
action equations.

97

A Petri net can be executed by playing the token game.
The animation of the token flow allows to experience the
net behaviour. See Figure 1 for an example, which will later
serve as one of our benchmarks.

3. ANALYSIS OF SPN

3.1 Preliminaries
Qualitative analysis. Petri nets enjoy a rich body of

qualitative analysis techniques; see [HGD08] for an overview.
Here we confine ourselves to the static decision of bounded-
ness, which is crucial for our discussion. A net is bounded,
if the maximal number of tokens on each place does not
exceed some constant in all reachable states. To decide it,
we introduce the incidence matrix C : P × T → Z, with
C(p, t) = f(t, p)− f(p, t). The matrix column C(., tj) is de-
noted with ∆tj . A net is structural bounded (bounded for
any initial state) iff there is a solution for x ·C ≤ 0, x > 0,
which can efficiently be checked [SR99].

Bounded Petri nets have a finite state space and the reach-
ability relation can be represented by a finite reachability
graph, where nodes are labelled with states, and edges with
the transitions which are responsible for the state change.
Algorithm 1 does a simple construction of the reachability
graph starting with the initial state. It obviously terminates
only if the Petri net is bounded. In practice the state space
explosion problem calls for symbolic state space representa-
tions and the use of more sophisticated construction princi-
ples such as saturation [Tov08].

Algorithm 1 Reachability graph construction.

Require: PN/SPN with initial state s0

1: stateSet S := E := ∅
2: stateSet U := {s0}
3: while U �= ∅ do
4: s := selectOneOf(U)
5: U := U \ {s}
6: S := S ∪ {s}
7: for all transitions tj ∈ T enabled at s do
8: s

� := s+∆tj

9: if s
� �∈ S ∪ U then

10: U := U ∪ {s�} � new node
11: end if
12: E := E ∪ {(s, tj , s�)} � new edge
13: end for
14: end while

Quantitative analysis. The reachability graph does not
contain any timing information; thus, it is not sufficient for
quantitative analysis of an SPN . But replacing each edge la-
bel (transition name) by the state-dependent rate of the fir-
ing transition defines a CTMC, which is a 3-tuple (S,R, s0)
with S denoting the set of reachable states of the underlying
net, R : S × S → R≥0 the rate function, and s0 the initial
state. R is usually represented by a real-valued matrix with
the non-zero entries defined by the state-dependent firing
rates; assuming no parallel transitions, i.e.

R(s, s�) =

�
hj(s) ∃ tj ∈ T : s

tj−→ s
�

0 otherwise .
(1)

The exit rate E(s) = Σs�∈SR(s, s�) is the sum of entries of
the matrix row indexed with s. A state s with E(s) = 0 is an

absorbing state. The probability of a transition t enabled in
state s to fire (which results in state s

�) within n time units

is 1−e
−R(s,s�)·n. The number of non-zero entries in each row

is bounded by the number of transitions in the SPN. Thus,
the rate matrix of a CTMC is always very sparse.

Having the CTMC, one can reason about the transient
probability π(α, s, τ) to be in a certain state s at a certain
time point τ starting with a probability distribution α. The
state-specific transient probability π(α, s, τ) can be general-
ized to π(α, τ) for all reachable states. The transient prob-
ability for infinite time is called the steady state probability
π(α).

Model checking. A more sophisticated analysis ap-
proach is model checking. It automatically determines
whether a system (in our case specified by a Petri net) sat-
isfies a specific property expressed in some kind of temporal
logic. The Continuous Stochastic Logic (CSL) introduced in
[ASSB00] and extended in [BHHK00] is a stochastic adap-
tion of the Computation Tree Logic (CTL) [CGP01] to for-
mulate properties of CTMCs. It has been used to analyze
biochemical networks, e.g., in [CVGO06, GHL07, KNP08].

To give an example, the question:“What is the probability
to reach within time τ a state where the sum of molecules
of the species A and B is not less than threshold?” can be
expressed by the CSL formula

P=?[F[0,τ](A+B ≥ threshold)] . (2)

For the comparison of the three base case techniques we
confine ourselves to the following CSL formula template

P=?[F[τ,τ](sp)] ; (3)

in words: “What is the probability to be at time point τ

in a state satisfying some state property sp?” For this spe-
cial case, model checking is nothing else than computing the
transient probabilities of all states satisfying the state for-
mula sp at time point τ and providing their sum.

In the following, a state property sp is restricted to qual-
itative conditions of states. Contrary, the CSL specification
in [BHHK00] allows state properties to contain probability
and steady state operators. The reason for our restriction
will be explained in the next sections.

3.2 Exact Numerical Analysis
One of the standard techniques for computing transient

probabilities is the uniformization method. Applying this
method means to solve the uniformization equation

π(α, τ) =
∞�

k=0

Pk
e
−γτ (γτ)

k

k!
. (4)

It is based on the idea to embed a discretization of the
CTMC, which is characterized by the probability matrix P,
into a Poisson process with rate γ. To compute π(α, τ) re-
quires to truncate the infinite sum in Eq. 4 to some kmax as
shown in Algorithm 2. For more details, especially how to
determine γ,P and kmax, see [Ste94].

The method is easy to implement, but the CTMC and at
least three real-valued vectors (v,v�

,α) in the size of the
state space have to be stored in memory. From a practical
view point, the CTMC has to be finite, although the basic
algorithm only requires a countable state space and an up-
per bound for the exit rates of the CTMC. But even for a
finite CTMC, the state space explosion makes its analysis
an expensive task, which is possibly practically infeasible.

98

Algorithm 2 Uniformization method.

Require: CTMC M , time point τ , initial distribution α
1: determine γ,P, kmax depending on M and τ

2: distribution v := v� := α

3: for k := 1 to kmax do
4: v� := v� ·P · γτ

k
5: v := v + v�

6: end for
7: π(α, τ) := e

−γτv

The steady state probability can be computed by solving
a linear system of equations in the size of the state space.
Thus, also the steady state analysis suffers from the state
space explosion and requires a finite CTMC. Iterative meth-
ods as the Jacobi or Gauss-Seidel method are the favored
ones.

In both cases, the exact numerical probability computa-
tion starts with constructing the complete state space before
eventually performing a repeated multiplication of a matrix
and a vector over real numbers in the dimension of the sys-
tem’s state space. Thus, a compact encoding of the matrix
is advisable, using, e.g., sparse matrices, Multi-Terminal Bi-
nary Decision Diagrams (MTBDD), or Kronecker Products
[MP04]. However, the success of these techniques is bound
to special conditions. For instance, a MTBDD representa-
tion requires a moderate number of distinct non-zero values
in the matrix and suffers from a higher boundedness degree,
caused by the increase of BDD variables [SH09]. In general
both conditions do not hold for biological networks.

We use the model checker IDD-MC for doing exact nu-
merical analysis. IDD stands for Interval Decision Diagrams
which are a very efficient data structure for a symbolic rep-
resentation of huge sets of integer vectors, such as states of
Petri nets [Tov08]. The tool offers qualitative and quantita-
tive state-space-based analysis, including CTL/CSL model
checking and the standard CTMC analyses. It features some
important characteristics, which are essential to achieve ef-
ficiency, see [SH09]. IDD-MC symbolically computes all re-
quired information on-the-fly using the reachable states and
the underlying stochastic Petri net. This is done by travers-
ing the IDD representation of the state space for all Petri
net transitions. During these traversals the algorithm com-
putes for all CTMC transitions the index of the source and
the target state and the possibly state-dependent firing rate.

The implementation of the algorithm is optimized in a
way that it treats all Petri net transitions at once during one
traversal and that it uses a sophisticated caching technique.
Moreover, symbolic analysis requires in general to find a suit-
able variable ordering, which is known to be a NP-complete
problem. IDD-MC implements heuristics which usually gen-
erate good orders resulting in small IDDs in terms of number
of nodes. Moreover, the number of IDD variables does not
depend on the boundedness degree of the system.

Model checking. CSL model checking of a CTMC M

can be realised by transient analysis. The basic concept is to
do transient analysis for a CTMCM

� which has been derived
from M by making certain states absorbing, depending on
the formula to be checked. IDD-MC supports full CSL for
SPN ; see [BHHK00] for syntax and semantics definition.

Parallelization. To our knowledge IDD-MC is the only
available tool which features symbolic, multi-threaded tran-
sient analysis to exploit workstations possessing multiple

CPUs. For this purpose, it generates a state space parti-
tioning based on the lexicographic index of the states and
computes each matrix-vector multiplication concurrently by
a user-specified number of threads. Multi-threading is avail-
able for all analyses using the transient and the Jacobi solver.
This is similar to the explicit approach reported in [BH06].

Limitations. Exact numerical analysis is generally infea-
sible for infinite CTMCs and often practically infeasible for
large CTMCs. Thus, approximation techniques are required
to treat SPN models with huge or infinite states spaces.

3.3 Approximative Numerical Analysis
Approximative numerical analysis tries to overcome the

problem of an unmanageable state space size by pruning
insignificant states. The idea is to combine a breadth-first
variant of the state space construction of Algorithm 1 with
a transient analysis using uniformization. During the con-
struction, all explored states having a probability below
a specified threshold δ will be removed from the current
state space. Thus, only a finite subset of a possibly infinite
state space will be considered. This“sliding window”method
[HMW09] can be further combined with a technique called
adaptive uniformization, where the Poisson process is re-
placed by a birth process. This combination was first intro-
duced in [DHMW09] as fast adaptive uniformization (FAU)
and is sketched in Algorithm 3.

Algorithm 3 Fast adaptive uniformization algorithm.

Require: SPN with initial state s0; time interval
[τ0, τmax]; λmax as upper bound of λ, threshold δ

1: int k := 0
2: time τ := τ0

3: stateSpace S := {s0}
4: while τ ≤ τmax do
5: λ := collect(S)
6: if λ > λmax then � λmax is to small
7: terminate
8: end if
9: c := birthProcess(λ, k)
10: S := propagate(S,λ, c)
11: S := pruneStates(S, δ)
12: τ := τ + λ

−1

13: k := k + 1
14: end while

It approximates the CTMC at time point τmax. At each
step of the breadth-first state space construction, the current
state space S never keeps states with a probability less than
δ. The method collect determines the maximum exit rate of
the states in S. The solution c of the birth process depending
on λ and k is required by the method propagate, which
realizes a complete step in the discretized CTMC. Doing so
propagate updates the probability for all states of S and
their direct successors. This will generally add new states to
the current state space. Afterwards pruneStates removes all
states with a probability below the threshold δ. A detailed
description of the algorithm can be found in [DHMW09].

Snoopy’s FAU implementation is extended by the han-
dling of immediate transitions. So we can analyse not only
SPN , but also GSPN . We have to deal with two differ-
ent types of states: tangible states, where only stochastic
transitions are enabled, and vanishing states that arise if
an immediate transition gets enabled. Due to the higher

99

priority of immediate over stochastic transitions, vanishing
states require instantaneous attention until no more vanish-
ing states are left. The simulation time does not progress
during the processing of vanishing states, because immedi-
ate transitions do not have a firing delay.

Model checking. Model checking Eq. 3 means for the
approximative numerical analysis to check the states con-
sidered at time point τ against the state formula sp and to
sum up the probabilities of the states where sp holds. For the
time being the supported model checking capabilities are re-
stricted to this special case. In principle the algorithm allows
to check any unnested, time-bounded CSL formula without
steady state operator by applying the technique sketched in
Section 3.2.

The two numerical approaches might take advantage from
a cross-fertilization. FAU, in its current version, is a one-
phase model checking approach – the property is checked
on-the-fly. Contrary, CSL model checking is a two-phase ap-
proach – first the state space is constructed, second the prop-
erty is checked. FAU has the potential for CSL model check-
ing in the chosen accuracy. In turn, the idea of adaptive
uniformization and vanishing states can be equally applied
to exact numerical analysis.

Parallelization. FAU has been just recently introduced.
Thus, the potential gain by parallelization has not been ex-
plored yet. But, there exist several ideas of parallel breadth-
first state space construction which seem to be promising
[BH06, Kno99].

Limitations. FAU allows transient analysis of unbounded
GSPN models. However, the technique may also exceed the
limits of the physical memory, if after the pruning step too
many CTMC states remain.

3.4 Simulation
In a situation where the memory effort prevents the use

of numerical methods, an efficient memory-saving method is
required. Instead of storing the CTMC or just a subgraph of
it, the stochastic simulation algorithm (SSA) introduced in
[Gil77] only creates a single finite path through the possibly
infinite CTMC. The computation of such a simulation run
(trajectory, path) needs only to store the current state. The
basic idea is as follows.

Given the system is at time point τ in state s. The proba-
bility that a transition tj ∈ T will occur in the infinitesimal
time interval [τ, τ +∆τ) is given by:

P (τ +∆τ, tj | s) = hj(s) · e−E(s)·∆τ (5)

For each transition tj , the rate is given by the propen-
sity function hj , where hj(s) is the conditional probability
that transition tj occurs in the infinitesimal time interval
[τ, τ +∆τ), given state s at time τ . So, the enabled transi-
tions in the net compete in a race condition. The fastest one
determines the next state and the simulation time elapsed.
In the new state, the race condition starts anew.
The SSA simulates every transition firing (basically by

using Eq. 5) one at a time, and keeps track of the current
system state. To determine the time increment∆τ and to se-
lect the next Petri net transition to fire requires to generate
two random numbers (r1, r2) uniformly distributed on (0, 1).
Different trajectories of the CTMC are obtained by different
initializations of the random number generator (line 1). Re-
liable conclusions about the system behaviour require many
simulations due to the stochastic variance. Thus, the use-

Algorithm 4 Stochastic simulation algorithm.

Require: SPN with initial state s0, time interval [τ0, τmax]
1: initRand(seed)
2: time τ := τ0

3: state s := s0

4: while τ < τmax do
5: draw random numbers r1, r2,

uniformly distributed on (0, 1)
6: ∆τ = − ln (getURand()) /E (s)
7: r := getURand()
8: e := 0
9: for all transitions tj ∈ T enabled at s do
10: e := e+ hj(s)
11: if e > r · E (s) then
12: s := s+∆tj

13: break
14: end if
15: end for
16: τ := τ +∆τ

17: end while

fulness of the simulation approach depends on the runtime
for each individual simulation run. So, accelerating SSAs are
desirable without changing the basic ideas of Algorithm 4.

A crucial point is the choice of pseudo-random number
generator. We decided to use the Mersenne Twister [MN98],
which is one of the best performing pseudo-random number
generators. Another issue is how to determine the next tran-
sition to fire. Many research has been devoted to this sub-
ject [MPC+06], but the performance gain compared to the
“Gillespie” SSA is rather moderate and model-dependent.

The simulative processing of immediate, deterministic and
scheduled transitions is rather straightforward, see [Ger01].
In short, the Algorithm 4 needs to be extended in two ways.

• After every firing of a Petri net transition (line 12),
it needs to be checked whether immediate transitions
got enabled. If so, these have to be processed until no
more immediate transitions are enabled. This possibly
leads to a time deadlock, if there exists a cyclic path
of immediate transitions.

• Having calculated the next time step (line 6), it needs
to be checked whether a deterministic or scheduled
transition gets enabled in the time interval [τ, τ +∆τ].
If yes, the one closest to τ is processed and the simu-
lation time will be set to the value of this transition,
i.e. τ = τtj .

Model checking. A run fulfills the path formula
F[τ,τ](sp), if the last considered state satisfies the state for-
mula sp. The ratio of the number of fulfilling and total num-
ber of runs leads to an approximation of the desired prob-
ability of Eq. 3. The CSL model checking capabilities are
subject to the same restrictions as FAU and are currently
limited to this special case.

To achieve an appropriate accuracy of the results, one has
to determine the required amount of simulation runs. The
method of our choice is the confidence interval as described
in [SM08]. The confidence interval contains the property of
interest with some predefined probability, called confidence
level. This confidence level has usually values of 90%, 95%,
or 99%. Assuming 95% and an accuracy of the results of

100

!"

!#

!$

!%

!&

!'"

!" !(!'" !'(!#" !#(!)" !)(!$"

*
+,
-
./
0

1.*2

345!!

!"

!#

!$

!%

!&

!'

!(

!)

!*

!" !' !#" !#' !$" !$' !%" !%' !&"

+
,-
.
/0
1

2/+3

.44

!"

!#

!$

!%

!&

!'

!(

!)

!*

!" !'" !#"" !#'" !$"" !$'"

+
,-
.
/0
1

2/+3

.44

!"

!#

!$"

!$#

!%"

!" !# !$" !$# !%" !%# !&" !&# !'"

(
)*
+
,-
.

/,(0

1,2&

Figure 2: The plots display (from left to right) the simulation results of ERK with N = 10, MAPK1 and
MAPK2 with N = 8, and ANG after 100,000 simulation runs. They are the starting point of our experiments.

10−5 leads to ≈ 38, 000, 000 runs. The number of required
simulation runs increases exponentially with the accuracy.
For example, an accuracy of 10−9 with the same confidence
level would need about 3.8 · 1011 simulation runs.

Parallelization. The individual simulation runs are con-
structed independently; thus parallelization is straightfor-
ward. It basically requires to organize a master thread dis-
tributing the work load on the n identical slave threads, and
collecting the results.

Limitations. If there is a demand for high accuracy, the
runtime may become the limiting factor.

3.5 Summary
The three base case techniques have been implemented in

Snoopy and IDD-MC. IDD-MC offers exact numerical anal-
ysis and full CSL model checking for bounded SPN models
in a multi-threaded fashion. Snoopy supports approximative
numerical analysis (FAU) of GSPN and multi-threaded ex-
act stochastic simulation of XSPN ; both combined with
model checking of Eq. 3.

See Table 1 for a concise summary of the main character-
istics discussed so far. There might already be a restricted
choice for suitable analysis techniques, depending on the
kind of model to be investigated and the kind of property to
be checked. In the next section we compare the three base
case techniques in efficiency terms.

Table 1: Comparison of the capabilities of the three
base case techniques
criterion exact FAU simulation

supported model class SPN ∗) GSPN XSPN
state space stored complete partial single state
infinite state space – + +

parallelization∗) + – +
CSL model checking∗) full CSL Eq. 3 Eq. 3

∗) as currently supported in our toolkit

4. EXPERIMENTAL RESULTS
In this section we present selected benchmark results for

the analysis techniques discussed in Section 3. The exper-
iments were done on 2.26 GHz Apple MAC Pro with 32
GB RAM and eight physical (with hyperthreading 16 logi-
cal) cores. Simulation and IDD-MC were done on Mac OS
X 10.5.8, the fast adaptive uniformization on Windows 7
64bit. 1 In the given tables, �†� means that the computation
1Snoopy relies on wxWidgets. Its current version does not
support 64bit Mac OS X.

time of an experiment reached the time limit of 14 hours
(applies only to IDD-MC), �−� means that the computation
exceeds the available physical memory. The time limit has
been enforced by the high number of IDD-MC experiments.

4.1 Case Studies
We considered the following stochastic models of biochem-

ical networks. For reasons of comparability of the three base
case techniques we have chosen SPN models, which are
structurally bounded.

• ERK: The RKIP inhibited ERK pathway published
in [CSK+03], analysed with the probabilistic model
checker PRISM in [CVGO06], discussed as qualitative
and continuous Petri nets in [GH06], and as three re-
lated Petri net models in [HDG10]. SPNERK com-
prises 11 places and 11 transitions connected by 34
arcs.

• MAPK: The mitogen-activated protein kinase pub-
lished in [HF96]. We consider the model in two dif-
ferent settings concerning the specific reaction rates:
MAPK1 – the original settings [HF96], analysed with
PRISM in [KNP08], and MAPK2 – the settings pub-
lished in [LBS00] and used in [GHL07], [HGD08].
SPNMAPK comprises 22 places and 30 transitions
connected by 90 arcs.

• ANG: The model of a part of the angiogenetic process
published in [NMC+09]. SPNANG comprises 39 places
and 64 transitions connected by 185 arcs.

The ERK and the MAPKmodels are parameterisable con-
cerning the initial state. The parameter N specifies a cer-
tain number of tokens which are interpreted as molecules
or concentration levels. In the ERK pathway, all non-empty
places carry initially N tokens; compare Figure 1. In the
MAPK models, only the places k, kk and kkk carry N to-
kens; the remaining places carry 1 token or are empty;
see supplementary material on our website http:www-
dssz.informatik.tu-cottbus.de/examples/cmsb2010.

4.2 Experiments
We designed a couple of computational experiments to

compare the three base case techniques – as implemented
in our toolkit – in terms of efficiency. For reason of com-
parability we basically applied transient analysis using the
template of Eq. 3.

Experiment 1. In order to instantiate the state property
sp and time value τ in Eq. 3, we started with evaluating a
couple of individual simulation runs to obtain an idea of

101

Table 2: Computation of the transient probabilities for the formulas (a - d) using exact numercial analysis. The
actual computation times (timec) and the total time (timet) including state space generation and initialization
are given for different numbers of threads. The number of required matrix-vector multiplications is given
in the column kmax. In principle, we are able analyse MAPK models beyond N = 12, but this would take
significantly more time than the established 14h limit.

model (formula) N kmax 1 thread 4 threads 16 threads
timec timet timec timet timec timet

ERK(a) 20 4,013 5m53s 5m58s 1m52s 2m01s 1m01s 2m22
30 5,881 1h38m52s 1h39m33s 29m42s 30m55s 13m49s 16m34s
40 7,730 11h54m43s 11h58m03s 3h23m50s 3h29m55s 1h43m00s 1h59m55s
50 9,569 † † † † 7h59m05s 9h27m36s

MAPK1(b) 4 88,166 7m47s 7m48s 3m23s 3m24s 6m06s 6m08s
8 137,757 † † 5h56m58s 5h57m16s 2h55m30s 2h 55m51s

12 187,238 † † † † † †
MAPK2(c) 4 20,773 1m54s 1m55s 45s 2m25s 1m12s 1m13s

8 37,530 † † 1h45m26s 1h45m43s 48m29s 48m50s
12 67,479 † † † † † †

ANG(d) 4 11,143 2m31s 2m40s 1m09s 1m19s 1m05s 1m17s

the models’ behaviour; the average of the runs is given in
Figure 2. Based on these observations we derived the specific
formulas which will be used in the following experiments.

(a) For ERK, simulation suggests to have reached a steady
state at time point 40. In the steady state the amount
of MEKpp seems to remain between 60% and 80% of
N , which motivates the formula

P=?[F[40,40](MEKpp ≥ N · 0.6 ∧MEKpp ≤ N · 0.8)].

(b) For MAPK1, the simulation indicates that at time point
40 at least 85% of N (the initial amount of k) has been
transformed into kpp, which yields the formula

P=?[F[40,40](kpp ≥ N · 0.85)].

(c) For MAPK2, using the alternative set of rates alters
the temporal evolution while preserving the trajectories’
shape. This suggests to adjust just the time parameter
in (b), and we get

P=?[F[250,250](kpp ≥ N · 0.85)].

(d) For ANG, simulation suggests that at time point 40,
there will be around 16 tokens on place Pip3, which
gives the formula

P=?[F[40,40](Pip3 ≥ 15 ∧ Pip3 ≤ 17)].

Experiment 2. We used IDD-MC’s CSL model checker
to construct the state space (see Table 3) and to check the
formulas (a - d). Table 2 presents some figures of the compu-
tation time and the total time needed for an exact transient
analysis done with 1, 4 and 16 computing threads. Some of
the computed probabilities can be found in Table 6.

Multi-threading achieves a significant speed up. Using the
16 logical cores accelerates the computation by factor 7,
which is close to the number of physical cores. However, Ta-
bles 3 and 2 show that runtime and state space size correlate.
In our experiments the runtime increases exponentially with
the number of tokens.

Experiment 3. We checked the formulas (a - d) with
Snoopy’s FAU implementation, using the values δ = 10−14

and λmax = 1600.

Table 3: Comparison of the size of the complete
states space S and the subset constructed by FAU
in percent for different initial markings.

model N |S| percentage of |S|
ERK 10 47,047 50.80%

20 1,696,618 9.98%
30 15,721,464 3.07%
40 79,414,335 1.26%
50 2.834E+08 �1%
60 8.114E+08 �1%

100 3.582E+12 �1%
250 1.591E+13 –
500 2.231E+14 –

MAPK1/2 4 99,535 57.29%/100.00%
8 10,276,461 11.57%/93.81%

12 210,211,339 2.44%/–
100 1.125E+16 –

ANG 1 197,414 51.95%

Table 4: Comparison of the memory consumption
peak of the exact and approximative numerical anal-
ysis for different initial markings.

model N | mem | | memFAU |
ERK 10 115MB 40MB

20 190MB 158MB
30 676MB 374MB
40 2.68GB 699MB
50 8.98GB 1.6GB
60 – 2.5GB

100 – 6.9GB
MAPK1/2 4 116MB/116MB 98MB/149MB

8 442MB/442MB 1.46GB/10.7GB
12 6.45GB/6.45GB 5.49GB/–

ANG 1 154MB 245MB

The computed probabilities are shown in Table 6. The
complete state space computed with IDD-MC is compared
with the peak of the approximated one created by FAU in

102

Table 5: Steady state analysis for ERK. The actual computation times (timec) and the total time (timet)
including state space generation and initialization are given for different numbers of threads. The number of
required iterations is given in the column iter.

model N iter 1 thread 4 threads 16 threads result
timec timet timec timet timec timet

ERK(e) 20 485 39s 45s 11s 21s 7s 27s 0.77508
30 736 11m54s 12m36s 3m15s 4m30s 1m38s 4m23s 0.83297
40 987 1h29m34s 1h33m07s 25m13s 31m33s 12m06s 14m45s 0.87452
50 1238 6h41m06s 6h57m05s 2h06m44s 2h37m22s 58m23s 2h27m50s 0.90465
60 1,489 † † 7h36m18s 9h18m33s 3h45m35s 8h25m15s 0.92682

Table 3 and 4. In our experiments, the state space considered
by FAU increases until a peak is reached, before decreas-
ing again. In all cases, the peak lies between 50% − 75% of
the time interval. FAU may perform entirely different for
the same structural model and the same initial state when
changing the rate settings, see the figures for MAPK1 and
MAPK2. It seems not to be possible to estimate the subset
of the state space required by FAU.

Experiment 4. We used the stochastic simulation engine
of Snoopy to compute the probabilities of the formulas (a -
d). All simulations were done with 16 computing threads. We
created 40,000,000 simulation runs per model and formula
in order to achieve the desired accuracy of 10−5.

The total runtime of the simulation increases linearly with
the number of considered events, see Table 6. This in turn
depends on the marking-dependent propensity functions. It
follows that the more tokens a given SPN contains, the
longer the simulation lasts. The multi-threaded simulation is
about 10 times faster then the single-threaded one. It scales
nearly linear with the physical cores, but not with the logical
ones (no figures given due to the space limitations).

Experiment 5.We used the steady state analysis of IDD-
MC to prove our conjecture concerning the ERK pathway,
see (a), and we ask for

(e) the steady state probability of being in a state with an
amount of MEKpp between 60% and 80% of N

S=?[MEKpp ≥ N · 0.6 ∧MEKpp ≤ N · 0.8] .

Table 5 shows that the probability converges to 1 with
an increase of N , as expected. Multi-threading experiments
with 1, 4 and 16 threads confirm the nearly linear speed-up
in the number of physical cores for the pure probability com-
putation (timec). The actual computation takes less than
half of the total time (timet). The remaining time is basi-
cally spent for initialization. As more threads are used, as
more time this step does cost. The relation between compu-
tation and initialization time depends on the number of iter-
ations (column iter), required to compute the steady state;
the number of iterations is modest for this example.

Discussion. We compared the results of the experiments
2, 3 and 4 concerning runtime and memory consumption
taking into account the figures obtained with 16 threads
for the exact numerical analysis. The comparison does not
sufficiently consider the potential of FAU; the conclusions
may change with a parallel FAU implementation.

Table 6 gives an overview on runtimes and computed prob-
abilities. For the simulation, an increasing number of to-
kens in the initial state results in a modest increase of the
runtime. For the numerical analysis methods, the increase

is unpredictable; for the experiments considered here it is
exponential and obviously model-dependent. For instance,
the approximative numerical analysis shows totally different
runtime behaviour for MAPK with different rate sets.

Table 4 compares the memory consumption peak of the
numerical analysis methods. The memory effort of the simu-
lation is in all cases insignificant. The approximative analy-
sis is again strongly effected by the model settings as can be
seen for MAPK1/2. Table 6 shows that an objective judge-
ment of the capabilities of the numerical methods is not easy
and seems to depend on the models. FAU outperforms the
exact numerical analysis concerning memory consumption
and runtime for the ERK model. For the MAPK and ANG
models we observe the opposite. In general, the size of the
model structure seems to have a negative influence on FAU,
caused by its explicit state space representation.

4.3 Summary
We summarize our experience with the three base case

techniques of stochastic analysis – as implemented in our
toolkit – in efficiency terms.

The efficiency of IDD-MC relies on symbolic data struc-
tures. In turn, the efficiency of symbolic representations
relies on the compression effect, which is generally not
predictable. Constructing the state space and CTL model
checking basically requires to juggle efficiently huge sets of
integer vectors in the size of P , the number of places (vari-
ables). This often works on current computer techniques up
to a state space of about 1020. Contrary, the core operation
of CSL model checking is a vector-matrix multiplication over
real values in the size of the state space S. This works cur-
rently up to a state space of some hundred million states.

FAU has been recently introduced; we report about our
very first experience in using this technique. The percent-
age of state space constructed depends on the formula (time
frame) and the rates, and is generally not predictable. In
the worst case, FAU generates the (almost) complete state
space, but at higher costs than the exact numerical analysis.

Simulation is the fallback technique, if numerical methods
did not succeed. It takes advantage of the increasing gap
between computing power and memory supply, specifically
in the era of multicore and cluster computing.

We derive the following general trends from our experi-
mental results.

The structural model size effects performance and
memory consumption of all methods. But only for the ap-
proximative numerical analysis the effect is significant be-
cause of its explicit state space representation. As more
places and transitions the net contains, as more memory
and finally runtime will be consumed. Thus, approximative

103

Table 6: Comparison of the three base case techniques. πτ denotes the computed probability of the formulas
(a - d) at time point τ . The columns time give the total analysis time.

model(formula) N Exact FAU Simulation
πτ time πτ time πτ time

ERK(a) 10 0.698561 6s 0.69856 9s 0.698468 3m20s
50 0.911121 9h27m67s 0.911107 29m18s 0.911109 13m18s

100 – – 0.978311 4h10m16s 0.978451 30m43s
1000 – – – – 0.999999 5h36m41s

MAPK1(b) 4 0.128856 6m08s 0.128852 26m16s 0.128877 14m23s
8 0.566233 2h45m51s 0.566071 9h7m5s 0.566206 16m49s

12 † † 0.599753 36h37m24s 0.600356 20m43s
50 – – – – 0.80188 46m51s

MAPK2(c) 4 0.202771 1m13s 0.020277 28m46s 0.02028 40m7s
8 0.413835 48m50s 0.413422 88h20m35s 0.413757 52m42s

12 † † – – 0.417308 59m46s
50 – – – – 0.962748 2h15m4s

ANG(d) 1 0.659294 77s 0.659289 12m3s 0.659266 30m26s

numerical analysis is currently suitable for structurally small
models only.

Increasing the resolution in the level semantics requires
to increase the token numbers. Higher token numbers
have two consequences. They generally involve higher state-
dependent rates, which have a major impact on the runtime
of all analyses. As higher the reaction rates, as more steps
the system will perform in a given time interval.

Higher token numbers also cause a dramatic increase of
the state space. The size of the state space effects the nu-
merical analysis methods in terms of memory consumption.
A look at Tables 3 and 6 may suggest the conclusion that
the state space size also effects the runtime. Indeed, state
space size and runtime correlate directly for numerical anal-
yses. For simulation, the correlation between state space size
and runtime is in fact caused indirectly by the higher state-
dependent rates.

There are several aspects which influence the experimen-
tal costs independently of the model. Our experiments prove
that parallelization reduces substantially the runtime for
simulation and exact numerical analysis. Of course, this re-
quires adequate hardware. Without multi-threading our sim-
ulation experiments would last 10 times longer, and our ex-
act numerical analysis experiments would last 6 to 7 times
longer, whereas the fast approximative numerical analysis is
restricted to one thread at the moment. So if one runs the
experiments on a machine with different capabilities, the ra-
tio between the individual methods may differ.

If accuracy of the results or rare events (rate � 10−5)
are an issue, exact numerical analysis should be the preferred
choice, if possible. It always calculates accurate results and
never neglects rare events. Accuracy of the results may be
a challenge for simulative analysis, where the number of re-
quired runs increases exponentially. Then parallelization is
a must. In the case of the fast adaptive uniformization, in-
creasing accuracy means to lower the threshold and to man-
age a larger subset of the state space.

If the analysis goes beyond the computation of transient
probabilities (as characterized by Eq. 3) one is currently
restricted in our toolkit to exact numerical analysis.

To sum up, there is no clear winner, but simulation
can be applied in any conceivable situation. In general the
best analysis technique highly depends on the given model

(net class, state space size), the required accuracy, the prop-
erty to be checked and on the available hardware.

We summarize the main lessons learnt by the following
user guidelines.

1. Simulation is always a good choice for a very first rough
estimate. It allows to get some experience of typical
model behaviour in reasonable time.

2. Higher demands in accuracy and rare events call for
numerical methods. Simulative analysis can only com-
pete if parallel hardware is exploited.

3. Exact numerical analysis requires a finite state space.
Structural boundedness can be decided efficiently. The
size of the state space is generally not predictable.

4. It is not predictable, which of the numerical methods
performs better for a given model and property.

5. An infinite state space is always manageable with sim-
ulation and maybe with approximative numerical anal-
ysis, depending on the model size, rates, and time
frame.

6. Memory is always the limiting factor for the numerical
methods, expected accuracy for simulation.

5. RELATED WORK
There is a multitude of tools on the market offering

similar functionalities as our toolkit, with exception of
FAU, for which we present the first public tool. An ade-
quate discussion would go far beyond the given space limit;
thus we only mention a few. Tools offering exact numer-
ical analysis and stochastic simulation of CTMC include
PRISM [HKNP06], SMART [CJMS06], Möbius [GKL+09],
and GreatSPN [BBC+09]. Only Möbius provides an adap-
tive transient solver.

There are several CSL model checking tools, among them
PRISM and MRMC [KZH+09]. A thorough comparison of
CSL model checking tools can be found in [JKO+08]. PRISM
can be compared with IDD-MC due to its CSL capabilities
and the states space size manageable by its hybrid engine.
However, it can not compete; see [SH09] for a comparison.

104

Finally, there are quite a number of commonly used sim-
ulation tools, e.g. Dizzy [ROB05], Copasi [HSG+06], and
StochKit [LCPG08]. Most tools import and export SBML
models, as Snoopy does as well, which allows to construct
models using other software and facilitates to share mod-
els between different software tools. Usually at least one
optimized variant of the Gillespie’s SSA is available. Be-
sides that, some tools (e.g. Dizzy and StochKit) allow ap-
proximative stochastic simulations by means of the tau-
leaping algorithm or by further optimized algorithm vari-
ants. StochKit provides means for stochastic simulations on
computing clusters, which is interesting for larger models.
In addition to stochastic simulations, Copasi allows hybrid
stochastic/deterministic simulations, which might be useful
for analysis of reaction networks that contain both fast and
slow reactions. Some tools (e.g., Dizzy, Copasi) also sup-
port the feature – as our tool Snoopy does – to translate
the stochastic reaction network into a system of ordinary
differential equations which can then be solved by built-in
numerical integrators.

However, none of these tools supports all three base case
techniques of stochastic analysis as discussed in this paper.

6. CONCLUSIONS
We present for the first time a comparative study of the

three base case techniques of stochastic analysis. While we
have used stochastic Petri nets to represent our models, our
comparison is equally valid for any kind of stochastic mod-
els. We report of computational experiments lasting in to-
tal about 400 hours. There is no clear winner. Our results
suggest that the three base case techniques are not compet-
ing, but complementing each other. It depends on the model
and the type of properties to be analysed which techniques
should be favoured.

The reported results may not come as a big surprise for
the expert – except of the astonishing sensitivity of FAU.
But this paper has been deliberately written from a user’s
point of view. We discuss all techniques in a detail which
should allow the readers to find the most suitable analysis
technique for their own settings. For this purpose, we present
user guidelines summarizing our main lessons learnt.

In our approach we take advantage of complementary
qualitative analysis techniques of Petri nets. The efficiency
of our analysis tools relies partly on local information, which
we extract from the Petri net structure. Our toolkit consists
of three tools, which can also be used separately. We are
not aware of any other toolkit, supporting a similar range of
analysis techniques

The experience gained during the computational experi-
ments indicate several directions for improvements. We are
working on a disc-based and distributed computation of
IDD-based CSL model checking, which is expected to man-
age more than 109 states. FAU has the potential for approxi-
mative stochastic model checking of time-bounded formulas,
which may be accelerated by parallelization techniques. We
have also a prototype of an IDD-based FAU implementation
supporting GSPN and intend to incorporate adaptive uni-
formization into IDD-MC. To accelerate our simulation en-
gines, we are experimenting with Graphics Processing Units
(GPU).

Acknowledgements.
We would like to thank Verena Wolf for fruitful discussions
and for the support in Snoopy’s FAU implementation, and
Thomas Meier for implementing Snoopy’s parallel simula-
tion engine.

7. REFERENCES
[ASSB00] A. Aziz, K. Sanwal, V. Singhal, and

R. Brayton. Model checking continuous-time
Markov chains. ACM Trans. on

Computational Logic, 1(1), 2000.
[BBC+09] S. Baarir, M. Beccuti, D. Cerotti,

M. De Pierro, S. Donatelli, and
G. Franceschinis. The GreatSPN tool: recent
enhancements. SIGMETRICS Perform. Eval.

Rev., 36(4):4–9, 2009.
[BH06] A. Bell and B. R. Haverkort. Distributed

disk-based algorithms for model checking very
large markov chains. Form. Methods Syst.

Des., 29(2):177–196, 2006.
[BHHK00] C. Baier, B. Haverkort, H. Hermanns, and

J.-P. Katoen. Model checking continuous-time
Markov chains by transient analysis. In Proc.

CAV 2000, pages 358–372. LNCS 1855,
Springer, 2000.

[CGP01] E. M. Clarke, O. Grumberg, and D. Peled.
Model Checking. MIT Press, 2001.

[CJMS06] G. Ciardo, R. L. Jones, A. S. Miner, and
R. Siminiceanu. Logical and stochastic
modeling with SMART. Performance

Evaluation, 63(1), 2006.
[CSK+03] K.-H. Cho, S.-Y. Shin, H.-W. Kim,

O. Wolkenhauer, B. McFerran, and W. Kolch.
Mathematical modeling of the influence of
RKIP on the ERK signaling pathway. In
CMSB 2003, pages 127–141. LNCS 2602,
Springer, 2003.

[CVGO06] M. Calder, V. Vyshemirsky, D. Gilbert, and
R. Orton. Analysis of signalling pathways
using continuous time Markov chains. Trans.
on Computat. Syst. Biol. VI, LNCS/LNBI

4220, pages 44–67, 2006.
[DHMW09] F. Didier, T. A. Henzinger, M. Mateescu, and

V. Wolf. Fast Adaptive Uniformization for the
Chemical Master Equation. In HiBi, 2009.

[Fra09] A. Franzke. Charlie 2.0 - a multi-threaded

Petri net analyzer. Diploma Thesis, BTU
Cottbus, CS Dep., 2009.

[Ger01] R. German. Performance analysis of

communication systems with non-Markovian

stochastic Petri nets. Wiley, 2001.
[GH06] D. Gilbert and M. Heiner. From Petri nets to

differential equations - an integrative approach
for biochemical network analysis. In Proc.

ICATPN 2006, pages 181–200. LNCS 4024,
Springer, 2006.

[GHL07] D. Gilbert, M. Heiner, and S. Lehrack. A
unifying framework for modelling and
analysing biochemical pathways using Petri
nets. In Proc. CMSB 2007, pages 200–216.
LNCS/LNBI 4695, Springer, 2007.

105

[Gil77] D. T. Gillespie. Exact stochastic simulation of
coupled chemical reactions. J. Phys. Chem.,
81(25):2340 – 2361, December 1977.

[GKL+09] S. Gaonkar, K. Keefe, R. Lamprecht,
E. Rozier, P. Kemper, and W. H. Sanders.
Performance and dependability modeling with
Möbius. SIGMETRICS Perform. Eval. Rev.,
36(4):16–21, 2009.

[HDG10] M. Heiner, R. Donaldson, and D. Gilbert.
Petri Nets for Systems Biology, in Iyengar,

M.S. (ed.), Symbolic Systems Biology: Theory

and Methods. Jones and Bartlett Publishers,
Inc., in Press, 2010.

[HF96] C. Huang and J. Ferrell. Ultrasensitivity in
the mitogen-activated protein kinase cascade.
Proc. Natl. Acad. Sci., 93:10078–10083, 1996.

[HGD08] M. Heiner, D. Gilbert, and R. Donaldson.
Petri nets in systems and synthetic biology. In
SFM, pages 215–264. LNCS 5016, Springer,
2008.

[HKNP06] A. Hinton, M. Kwiatkowska, G. Norman, and
D. Parker. PRISM: A tool for automatic
verification of probabilistic systems. In Proc.

TACAS 2006, pages 441–444. Springer, LNCS
3920, 2006.

[HLGM09] M. Heiner, S. Lehrack, D. Gilbert, and
W. Marwan. Extended Stochastic Petri Nets
for Model-Based Design of Wetlab
Experiments. pages 138–163. LNCS/LNBI
5750, Springer, 2009.

[HMW09] T. Henzinger, M. Mateescu, and V. Wolf.
Sliding window abstraction for infinite Markov
chains. In Proc. CAV, pages 337–352.
Springer, LNCS 5643, 2009.

[HSG+06] S. Hoops, S. Sahle, R. Gauges, C. Lee,
J. Pahle, N. Simus, M. Singhal, L. Xu,
P. Mendes, and U. Kummer. Copasi–a
complex pathway simulator. Bioinformatics,
22(24):3067–74, Dec 2006.

[HST09] M. Heiner, M. Schwarick, and
A. Tovchigrechko. DSSZ-MC - A Tool for
Symbolic Analysis of Extended Petri Nets. In
Proc. Petri Nets 2009, pages 323–332. LNCS
5606, Springer, 2009.

[JKO+08] D. N. Jansen, J.-P. Katoen, M. Oldenkamp,
M. Stoelingan, and I. Zapreev. How fast and
fat is your probabilistic model checker? In
HVC 2007, pages 69–85. Springer, LNCS 4899,
2008.

[Kno99] W. J. Knottenbelt. Parallel Performance

Analysis of Large Markov Models. PhD thesis,
Department of Computing, Imperial College of
Science, Technology and Medicine. University
of London., December 1999.

[KNP08] M. Kwiatkowska, G. Norman, and D. Parker.
Using probabilistic model checking in systems
biology. ACM SIGMETRICS Performance

Evaluation Review, 35(4):14–21, 2008.
[KZH+09] Joost-Pieter Katoen, Ivan S. Zapreev,

Ernst Moritz Hahn, Holger Hermanns, and
David N. Jansen. The Ins and Outs of The
Probabilistic Model Checker MRMC. In

Quantitative Evaluation of Systems (QEST),
pages 167–176. IEEE Computer Society, 2009.

[LBS00] A. Levchenko, J. Bruck, and P.W. Sternberg.
Scaffold proteins may biphasically affect the
levels of mitogen-activated protein kinase
signaling and reduce its threshold properties.
Proc Natl Acad Sci USA, 97(11):5818–5823,
2000.

[LCPG08] H. Li, Y. Cao, L. Petzold, and D.T. Gillespie.
Algorithms and software for stochastic
simulation of biochemical reacting systems.
Biotechnol Prog, 24(1):56–61, 2008.

[MN98] M. Matsumoto and T. Nishimura. Mersenne
twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator.
ACM Trans. Model. Comput. Simul.,
8(1):3–30, 1998.

[MP04] A. Miner and D. Parker. Validation of

Stochastic Systems: A Guide to Current

Research, chapter Symbolic Representations
and Analysis of Large Probabilistic Systems,
pages 296–338. LNCS 2925. Springer, 2004.

[MPC+06] J. M. McCollum, G. D. Peterson, C. D. Cox,
M. L. Simpson, and N. F. Samatova. The
sorting direct method for stochastic simulation
of biochemical systems with varying reaction
execution behavior. Comput. Biol. Chem.,
30(1):39–49, 2006.

[NMC+09] L. Napione, D. Manini, F. Cordero,
A. Horvath, A. Picco, M. De Pierro, S. Pavan,
M. Sereno, A. Veglio, F. Bussolino, and
G. Balbo. On the Use of Stochastic Petri Nets
in the Analysis of Signal Transduction
Pathways for Angiogenesis Process. In Proc.

CMSB 2009, pages 281–295. LNCS/LNBI
5688, Springer, 2009.

[RMH10] C. Rohr, W. Marwan, and M. Heiner.
Snoopy–a unifying Petri net framework to
investigate biomolecular networks.
Bioinformatics, 26(7):974–975, 2010.

[ROB05] S. Ramsey, D. Orrell, and H. Bolouri. Dizzy:
stochastic simulation of large-scale genetic
regulatory networks. J Bioinform Comput

Biol, 3(2):437–54, Apr 2005.
[SH09] M. Schwarick and M. Heiner. CSL model

checking of biochemical networks with interval
decision diagrams. In Proc. CMSB 2009, pages
296–312. LNCS/LNBI 5688, Springer, 2009.

[SM08] W. Sandmann and C. Maier. On the
statistical accuracy of stochastic simulation
algorithms implemented in Dizzy. In Proc.

WCSB 2008, pages 153–156, 2008.
[SR99] P.H. Starke and S. Roch. INA - The Integrated

Net Analyzer. www.informatik.hu-
berlin.de/∼starke/ina.html,
1999.

[Ste94] W.J. Stewart. Introduction to the Numerical

Solution of Markov Chains. Princeton Univ.
Press, 1994.

[Tov08] A. Tovchigrechko. Model Checking Using

Interval Decision Diagrams. PhD thesis, BTU
Cottbus, Dep. of CS, 2008.

106

