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Abstract. MARCIE is a tool for the analysis of generalized stochastic
Petri nets which can be augmented by rewards. The supported analy-
sis methods range from qualitative and quantitative standard properties
to model checking of established temporal logics. MARCIE’s analysis
engines for bounded Petri net models are based on Interval Decision
Diagrams. They are complemented by simulative and approximative en-
gines to allow for quantitative reasoning on unbounded models. Most of
the quantitative analyses benefit from a multi-threaded implementation.
This paper gives an overview on MARCIE’s functionality and architec-
ture and reports on the recently added feature of CSRL and PLTLc
model checking.

Keywords: generalized stochastic Petri nets, model checking, simula-
tion.

1 Objectives

Generalized stochastic Petri nets (GSPN ) are a widely used formalism in ap-
plication fields as performance evaluation of technical systems, or synthetic and
systems biology. Augmented with rewards they permit intuitive modeling and
powerful analyses of inherently concurrent stochastic systems. As their seman-
tics can be mapped to Continuous-time Markov chains (CTMC), a wide range
of quantitative analysis methods up to probabilistic model checking is available.

There are several tools supporting different kinds of efficient CTMC analysis,
e.g., by applying symbolic techniques or discrete event simulation. However, their
use is often restricted by specific constraints. There are tools which support only
the analysis of bounded models, even if discrete event simulation is used. Some
tools enable the augmentation of CTMC models by rewards, but do not provide
model checking of related temporal logics as the Continuous Stochastic Reward
Logic (CSRL). Most tools do not support multi-threading, although this could
drastically decrease the runtime of the analyses. Often tools demand for skilled
users with sophisticated insights how to specify the model best and how to
set the most appropriate tool parameters to configure internal data structures
and algorithms. Dedicated simulation tools generally support only the simple
generation of traces, although more advanced evaluation would be desirable.
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MARCIE overcomes these problems and integrates all features into one tool
dedicated to the analysis of GSPN extended by rewards.

2 Functionality

In this section we give an overview of MARCIE’s functionality with special focus
on its latest extensions. The numbers given in round brackets refer to Fig. 3.

2.1 Net Classes

Basically, MARCIE analyses GSPN augmented by rewards. However, MAR-
CIE’s internal net representation (1) distinguishes the following net classes as
the range of supported analysis capabilities depends on them. The core build
place/transition Petri nets extended by read and inhibitor arcs. As they do not
contain any time information, we call them qualitative Petri nets (QPN ). Fig. 1
shows a very simple QPN for a producer and a consumer connected by an
N -bounded buffer.

We speak of stochastic Petri nets (SPN ) if all transitions carry further infor-
mation in terms of firing rates which govern exponentially distributed waiting
times. We obtain generalized stochastic Petri nets (GSPN ) if additionally imme-
diate transitions (no waiting time) are allowed. SPN and GSPN can be enriched
by rewards which can be associated with states (rate rewards) or transitions (im-
pulse rewards). They are specified by reward definitions in a style similar to [19].
A reward definition consists of a set of reward items – state reward items and
transition reward items. A reward item specifies a set of states by means of a
guard and a possibly state-dependent reward function defining the actual reward
value. We call an SPN augmented with rate rewards a stochastic reward net
(SRN ), and a GSPN augmented with arbitrary rewards a generalized stochas-
tic reward net (GSRN ). Rewards do not change the state space, but prepare
the ground for more convenient and powerful analyses.

2.2 Engines

IDD Engine. (3) A cornerstone of MARCIE is its efficient implementation
of Interval Decision Diagrams (IDD) [29]. Three different state space genera-
tion algorithms (4) were implemented upon this. The first one is the common
Breadth-First Search (BFS) algorithm. All transitions fire in one iteration once

producer consumerbuffer

receivesendproduce consume
N

Fig. 1. A producer/consumer system with a buffer of size N
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according to the transition order before adding the new states to the state space.
The second algorithm is called Transition chaining. It works like BFS, but the
state space is updated after the firing of each single transition. The Saturation
algorithm is the last one. Transitions fire in conformance with the decision dia-
gram. A transition is saturated if its firing does not add new states to the current
state space. It should be noted that the efficiency of Chaining and Saturation
depends on the transition order.

Having the state space, MARCIE permits to find dead states and to decide
reversibility and liveness of transitions, which involves a symbolic decomposition
of the state space into strongly connected components.

The implemented IDD engine enjoys several features to address efficiency
issues, as for instance the concept of shared DDs, fast detection of isomorphic
sub-diagrams by use of a unique table, and efficient operation caches; see [29]
for a detailed discussion. Furthermore, the engine offers dedicated operations
for forward and backward firing of Petri net transitions. It is well known that
the variable order used for constructing a DD may have a strong influence on
its size in terms of number of nodes, and thus on the performance of all related
operations. To find an optimal variable order is an NP-hard problem. MARCIE’s
heuristic to pre-compute static variable orders has a simple underlying idea. It
examines the structure of the given Petri net and arranges dependent places close
to each other. Two places are dependent if there is a transition which affects
both places [20]. MARCIE’s order generator (2) offers seven options to control
the generation of the place order, and six options to influence the transition
order.

Symbolic CTMC Engine. (6) MARCIE provides exact quantitative analy-
ses based on the computation of various probability distributions. Its symbolic
engine is responsible for a compact representation of the real-valued state transi-
tion relation, amatrix, and some efficient numerical operations which are basically
matrix-vector multiplications. The engine combines IDD-based state space encod-
ing and “on-the-fly” generation of the state transitions which are labeled with the
firing rates of stochastic transitions or the firing probabilities of immediate transi-
tions. The computation vectors and the entries of the matrix diagonals are explic-
itly stored in arrays of double precision type and represent the actual limitation of
applicability as their size equals the number of reachable states. On current work-
stations this still allows us to consider models with more than 109 states.

MARCIE computes the instantaneous and cumulative transient probability
distribution and the steady state probability distribution for GSPN , and the
joint distribution of time and accumulated reward, a special case of Meyer’s
performability, for SRN . For the latter, MARCIE makes use of Markovian ap-
proximation [5] and transforms the SRN description into an SPN . For more
details we refer to [26,28,25].

Approximative CTMC Engine. (7) To overcome the problem of an unman-
ageable state space size, MARCIE provides an approximative CTMC engine.
This engine dynamically restricts the number of states. The basic idea is to
combine a breadth-first variant of the state space construction with a transient
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analysis using uniformization [7]. During construction, all explored states having
a probability below a specified threshold will be removed from the current state
space. The default threshold is 10−11, but can be changed by the user. Thus,
only a finite subset of a possibly infinite state space will be considered. Contrary
to the symbolic CTMC engine, it uses an explicit state space representation.

The approximative engine can handle SPN and GSPN . The results can
be exported in comma separated values (CSV) format for plotting or further
analysis.

Stochastic Simulation Engine. (8) If the approximative numerical analysis ex-
ceeds the available memory, the method of choice has to be simulation. MARCIE
provides two stochastic simulation algorithms – the direct method introduced
by Gillespie [12], and the next reaction method introduced by Gibson & Bruck
[11]. Stochastic simulation generates paths of finite length of a possibly infinite
CTMC. In contrast to numerical analysis, simulation has a constant memory
consumption, because only the current state is hold in memory.

Generally it is necessary to perform a sufficient number of simulation runs
due to the variance of the stochastic behavior. We choose the confidence interval
method as described in [22] to determine the required number of simulation runs.
The user can specify the confidence interval by defining the confidence level,
usually 95% or 99%, and the estimated accuracy, e.g., 10−3 or 10−4. MARCIE
calculates the required number of simulation runs to achieve this confidence
interval. Alternatively, the user can set the number of simulation runs manually.

The individual simulation runs are done independently from each other. Thus,
it is not challenging to parallelize stochastic simulations. MARCIE provides a
multi-threaded simulation engine. Stochastic simulation results can be exported
in CSV format for visualization, further analyses or documentation purposes.

This engine can not only treat GSPN , but also XSPN ; see [14] for details.

2.3 Model Checkers

CTL (5) The Computation Tree Logic (CTL) [4] is a widely used branching
time logic. It permits to specify properties over states and paths of a labeled
transition system (LTS), the Kripke structure. Path quantifiers specify whether
path formulas, which can be written by means of temporal operators, should
be fulfilled on all paths or at least on one path starting in some state. One can
interpret the reachability graph of a Petri net as a Kripke structure and thus
apply CTL model checking algorithms. MARCIE supports symbolic CTL model
checking for QPN based on its IDD engine, for details see [29].

CSL (9) The Continuous Stochastic Logic (CSL) [1] is the stochastic counter-
part to CTL. The path quantifiers of CTL are replaced by the probability oper-
ator P . The usual temporal operators are decorated with time intervals. In [2],
CSL has been extended by the steady state operator S and by time-unbounded
versions of the temporal operators. The basic CSL model checking algorithm is
similar to the one for CTL, but additionally requires to compute steady state
and transient probabilities. MARCIE supports CSL model checking of GSPN
based on its exact symbolic engine. Unnested formulas can also be checked with
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the simulative engine. If CSL formulas are unnested and time bounded, it is also
possible to use the approximative engine.

Reward Measures. In addition to CSL, special operators for the computation
of expectations of instantaneous and cumulative state and transition rewards
have been introduced [19]. MARCIE’s symbolic CTMC and simulation engines
support these measures, too. A genuine extension of CSL by rewards is presented
in the next section.

2.4 New Functionalities

We now discuss in more details the latest features integrated into MARCIE.

Abstract Net Definition Language. MARCIE reads Petri net models defined
in the Abstract Net Description Language (ANDL) [24]. ANDL is a lightweight
and human readable description language with semantical and syntactical simi-
larities to a guarded command language. However, contrary to, e.g., the PRISM
language [16], ANDL enjoys an explicit Petri net semantics and defines addi-
tional transition types and rate function patterns.

ANDL complements model specification with bloated XML-based languages
like PNML [15] (which MARCIE does support for QPN ) and serves as exchange
format between MARCIE and its friend Snoopy [13], which can be used to
construct QPN , SPN , GSPN , and XSPN .

The ANDL specification of the running SPN example in Fig. 1 and an addi-
tional reward definition are given in Fig. 2.

spn [procon] {
constants:

int cap; // buffer capacity
double p_rate; // production rate
double c_rate; // consumption rate

places:
producer = 1;
consumer = 0;
buffer = 0;

transitions:
receive : [consumer < 1] : [consumer + 1] & [buffer - 1] : 1;
send : [buffer < cap] : [buffer + 1] & [producer - 1] : 1;
produce : [producer < 1] : [producer + 1] : p_rate;
consume : : [consumer - 1] : c_rate;

}

rewards [ r2r ] {
/* states where the

consumer is ready to
receive, have
a reward of 1
*/
consumer > 0 : 1 ;

}

Fig. 2. The ANDL specification of a scalable SPN for the producer/consumer model.
The buffer capacity and the rates of item production and consumption are defined
by constants. The SPN is augmented by the separate reward definition r2r which
associates a reward of one to states where the consumer can receive an item.

Continuous Stochastic Reward Logic. (9) As a new feature MARCIE sup-
ports the Continuous Stochastic Reward Logic (CSRL) [5]. CSRL is a superset
of CSL and augments the temporal operators with additional reward intervals.
Re our example and the reward definition r2r, we can ask for instance for the
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probability to reach within t time units a state where the buffer is full. We may
also expect that the consumer is ready to receive for at least half of the time
period. Thus we specify the reward interval [t/2, t], and obtain the CSRL formula

P [r2r]
=? [F[0,t]

[t/2,t]buffer = cap] .

The extent of MARCIE’s support of CSRL model checking depends on the en-
gines. The simulative engine supports unnested CSRL formulas for GSRN . The
symbolic engine currently supports full CSRL for SRN . It uses Markovian ap-
proximation to transform the SRN into an SPN and maps the CSRL formula
to a CSL formula with the reward bounds encoded as state properties. For more
details we refer to [25].

Probabilistic Linear-Time Temporal Logic. (10) Besides the branching
time temporal logics CTL and CSRL, MARCIE supports the Probabilistic Linear-
time Temporal Logic with numerical constraints (PLTLc) [9]. In PLTLc, one can
encode formulas on the future of paths through the state space of the model un-
der study. So, it is quite obvious to deploy stochastic simulation to verify PLTLc
formulas, because that is what stochastic simulation does – to compute paths
through the model’s state space. In contrast to branching time logics, PLTLc
can not compute the probabilities of a given state, because it operates on paths,
not on distributions. Therefore, it is impossible to nest the probability operator
P in PLTLc. We recently extended PLTLc to check time-unbounded temporal
operators, see [21].

Unlike symbolic model checking, simulative model checking computes a con-
fidence interval of the expected probability rather than the concrete value, i.e.,
simulative model checking calculates probabilities up to a certain accuracy, which
is the width of the confidence interval. Besides the standard return value of the
P operator, the PLTLc model checker yields the expected probabilities of the
domains of free variables (denoted with $) for which the formula holds. Back
to our example, the maximum number of tokens on the place buffer up to time
point t and their probabilities can be determined with the following formula

P=?[F
[0,t]buffer > $x] .

The PLTLc model checker works with any exact stochastic simulation algorithm,
e.g., the direct method and the next reaction method, both are implemented in
MARCIE. The model checking procedure is done on-the-fly, i.e., the formula is
checked while the trace is generated. Furthermore, pre-computed integer traces
given in CSV format can be verified.

3 Architecture

In the following we present the basic tool architecture, which is depicted in Fig. 3.
We sketch the main ideas which we took into consideration during the develop-
ment of MARCIE’s components to achieve highly efficient analysis capabilities.
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Fig. 3. MARCIE’s architecture and its eleven components

MARCIE is entirely written in the programming language C++ with intensive
use of template programming. It builds on the GNU multiple precision library
and several parts of the boost library.

Currently, all parsers (11) for the actual Petri nets, CTL and CSRL formulas,
reward definitions, as well as place and transition orders are built on the aging
lexical analyzer Flex and parser generator Bison. We are about to move to the
lightweight parser generator Spirit from the boost library, as it has already been
done for the PLTLc parser. See [24] for detailed input syntax specifications.

4 Comparison with Other Tools

One could create a long list of tools, supporting the analysis of CTMCs and
related formalisms and, thus, indirectly stochastic Petri nets as well. Due to the
lack of space we confine ourselves to a very brief shortlist. Table 1 compares the
main features. An elaborated comparison of CSL model checkers can be found
in [17], comprising explicit, symbolic and simulative engines.

The probabilistic model checker PRISM [16] supports analysis of CTMCs,
DTMCs and Markov Decision Processes by means of CSL, PCTL, and LTL, and
exploits Multi-Terminal BDDs. It also permits the computation of expectations
of reward measures and defines its own model description language in the style
of guarded commands which can be easily used to specify bounded SPN . An
extensive performance comparison of MARCIE and PRISM was done in [27].



396 M. Heiner, C. Rohr, and M. Schwarick

Table 1. Feature comparison of MARCIE and related tools. Entries in round brackets
suggest a look in the tool’s manual for further details.

MARCIE Prism MRMC Smart Möbius

Q
u
al
it
at
iv
e Net classes XPN SPN — GSPN (XSPN )

State space
generation

BFS,
Chaining,
Saturation

BFS —
BFS,

Chaining,
Saturation

BFS

Orders heuristics plain — plain plain

Standard
properties

! (!) — (!) —

Model
checker

CTL — — CTL —

N
u
m
er
ic
al

Net classes GSPN SPN (SPN ) GSPN (XSPN )

Transient ! ! ! ! !
Steady state ! ! ! ! !
Rewards ! ! ! — !
Model
checker

CSRL CSL (CSRL) — —

Multi
threading

(!) — — — —

S
im

u
la
ti
ve

Net classes XSPN SPN (SPN ) — XSPN
Transient ! ! ! — !

Steady state ! — ! — !
Rewards ! ! — — !
Model
checker

(CSRL),
PLTLc

(CSL) (CSL) — —

Multi
threading

! — — — !

See also [26], where we compared PRISM and MARCIE’s predecessor IDD-MC
concerning transient analysis of biological models.

Another CSL model checker is the Markov Reward Model Checker (MRMC)
[18]. It also offers analysis capabilities for CTMCs and related formalisms based
on temporal logics. Besides MARCIE, it is the only tool supporting model check-
ing of CSRL formulas. MRMC uses sparse representations to encode state space
and matrices. Special features are bisimulation-based state space reduction and
simulative steady state detection. MRMC provides simulative model checking of
unnested CSL. It requires third party tools to generate the actual Markov model,
which becomes prohibitive with increasing file size.

A further popular tool is SMART [3]. It offers qualitative and quantitative anal-
ysis of GSPN with marking-dependent arcs and defines its own model descrip-
tion language. SMART supports CTL, but not CSL model checking, in spite of
its ability to compute transient and steady state probabilities. The user can choose
between various explicit and symbolic storage strategies for the state space
(e.g., AVL trees,Multi-valued DecisionDiagrams (MDDs)) and for the rate matrix
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(e.g., Kronecker representations,Multi-TerminalMDDs, Edge-ValuedMDDs, Ma-
trix Diagrams (MxD)). However, some of these storage strategies force the user to
obey somemodeling restrictions.Theuse ofMDDs,which, e.g., allow for saturation-
based reachability analysis, requires to specify a suitable place partition.

A tool which offers explicit, symbolic (MDD, MxD, MTBDD, Lumping) and
multi-threaded simulative analysis is Möbius [6].

None of these tools supports the numerical approximation algorithm for com-
puting transient solutions of stochastic models as implemented in MARCIE. To
the best of our knowledge, the tool Sabre [8] is besides MARCIE the only publicly
available implementation. But in contrast to MARCIE, Sabre does not include
any model checking capabilities.

The Monte Carlo Model Checker MC2 [9] validates PLTLc formulas, but does
not include any simulation engine. MC2 works offline by reading a set of sampled
trajectories, generated by any simulation or ODE solver software.

Furthermore, there exist a great variety of dedicated simulation tools, e.g.,
StochKit2 [23], but all lack advanced analysis methods.

5 Installation

MARCIE is available for non-commercial use. We provide statically
linked, self-contained binaries for Mac OS X, and Linux. The tool,
its manual and a benchmark suite can be found on our website
http://www-dssz.informatik.tu-cottbus.de/marcie.html. Currently,
MARCIE itself comes with a textual user interface. Tool options and input files
can also be specified by a generic Graphical User Interface (GUI), written in
Java, which can be easily configured by means of an XML description. The GUI
is part of our Petri net analyzer Charlie [10].
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