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ABSTRACT
We sketch the fundamental properties and features of Snoopy,
a tool to model and execute (animate, simulate) hierarchical
graph-based system descriptions. The tool comes along with
several pre-fabricated graph classes, especially some kind of
Petri nets and other related graphs, and facilitates a com-
fortable integration of further graph classes due to its generic
design.

To support an aspect-oriented model engineering, differ-
ent graph classes may be used simultaneously. Snoopy pro-
vides some features (hierarchical nodes, logical nodes), which
are particularly useful for larger models, or models with an
higher connectivity degree.

There are several Petri net classes available, among them
the purely qualitative place/transition nets according to the
standard definition and a version enhanced by four special
arcs as well as three quantitative extensions - time Petri
nets, stochastic Petri nets, and continuous Petri nets. Each
of these classes enjoys dedicated animation or simulation
features.

Our tool runs on Windows, Linux, and Mac operating
systems. It is available free of charge for non-commercial
use.

Keywords
editor, animator, simulator, numerical integration algorithms,
qualitative and quantitative Petri nets.

1. PRELIMINARIES
The support by tools is a necessary condition to get higher

user acceptance for a given formalism. The perspective from
various abstraction levels by several models of different ex-
pressive strength is a crucial point for a sophisticated eval-
uation of a system under investigation, technical or natural
ones.

In this paper, we present Snoopy [43], a generic and adap-
tive tool for modelling and animating/simulating hierarchi-
cal graph-based formalisms. While concentrating our de-
velopment as far on several kinds of Petri nets and related
graph classes, the generic design of Snoopy facilitates also a

comfortable extension by new graph classes.
The simultaneous use of several graph classes is supported

by the dynamic adaptation of the graphical user interface to
the active window. So it is possible to treat qualitative and
quantitative models of the system under investigation side
by side.

For example you can start with a qualitative Petri net
model and increase first your confidence in the net behaviour
by animating it, i.e. playing the token game, before check-
ing qualitatively some essential behavioural properties using
external analysis tools. Later you can easily move on to re-
lated quantitative models, deterministically timed, stochas-
tic or continuous ones, to get a deeper understanding of the
time dependencies governing your system. These quantita-
tive models can be simulated using internal or external tools.
This integrating approach has been employed in [6], [7], [15],
[8]. To support this style of model engineering it is possible
to convert different graph classes into each other, obviously
with loss of information in some directions.

In the following we use the term animation for the visu-
alization of the token game. The token game executes the
model qualitatively, according to one of the defined firing
rules, complemented by non-deterministic choices, if neces-
sary. On the contrary, the term simulation stands briefly for
the quantitative evaluation of the studied system such as by
stochastic or deterministic integration algorithms to solve
systems of generally non-linear equations. A smooth anima-
tion is performed even for large models, but the generic data
structure of Snoopy induces a lower performance in more ex-
pensive simulations compared to dedicated tools. So a wide
range of exports to analysis tools is available.

Snoopy runs on Windows, Linux, and Mac operating sys-
tems. It is available free of charge for non-commercial use,
and can be obtained from our website [43]. The source code
is available on request.

2. GRAPH INDEPENDENT FEATURES
Snoopy provides some consistently available generic fea-

tures for all graph classes. For example, the graphical editor
supplies some fundamental commands like copy, paste and
cut, allowing an easy re-use of building blocks. In addi-



tion, some advanced layout functions like mirror, flip and
rotate as well as an automatic layout by the Graphviz li-
brary [39] may be beneficial. A basic printing support and
some graphical file exports (eps, Xfig, FrameMaker) help for
documentation purposes.

The GUI is realized in Windows as MDI-application, which
is simulated in Linux by a tabbed document interface. Snoopy
uses in Mac OS the native look and feel single document in-
terface (SDI). Some freely placeable mini windows give ac-
cess to the insertable graph elements and the hierarchy of
the model.

All attributes of any graph element, like nodes or edges,
may be set not only for single elements, but also for a set of
selected elements all at ones.

Graph constraints permit only the creation of syntacti-
cally correct models of the implemented graph classes.

The construction of large graphs is supported by a gen-
eral hierarchy concept of subgraphs (represented as macro
nodes) and by logical (fusion) nodes, which serve as con-
nectors of distributed net parts. Additionally, colours or
different shapes of individual graph elements may be used
to highlight special functional aspects (compare Figure 2).

A generic interaction mode allows a communication be-
tween different graphs. Some events in one graph can trig-
ger commands (colouring, creating or deleting of graph ele-
ments) in another graph, even if they are instances of differ-
ent graph classes [4].

Furthermore, a dynamic colouring of graph elements is
available to visualize paths or node sets [46]. It is possible to
select more than one node set, and to colour the intersection
or union of these selected sets.

A digital signature by md5 hash ensures the structure
and the layout of the graph separately, which may be used
to increase the confidence in former analysis results during
model development [3].

3. REALIZED GRAPH CLASSES

3.1 Reachability Graph
This simple graph class supports just one node and one arc

type, besides comment nodes. The graph nodes can carry a
name, a description and a Petri net state, which consists of
a list of places and their markings. The arcs may be labelled
by arbitrary character strings. For an example see Figure 2,
the window in the right lower corner.

3.2 Petri Net
This class of directed bipartite multi-graphs allows quali-

tative modelling by the standard notion of place/transition
Petri nets. An animation by the token game gives first in-
sights into the dynamic behavior and the causality of the
model. The token game may be played step-wise or fully
automated in forward or backward direction with different
firing rules (single, intermediate, or maximal steps). In the
automatic mode, encountered dynamic conflicts are resolved
randomly.

The concepts of hierarchical nodes and fusion nodes have
been proven to be useful for the modelling of larger systems.
The dynamic colouring of node sets allows to highlight P/T-
invariants, structural deadlocks, traps or any other subsets
of nodes, or subnets induced by node sets, respectively.

The generic interaction manager [4] permits to construct
the reachability graph driven by the token flow animation

of the Petri net. Furthermore, the export to a wide range of
external analysis tools is available, among them INA, Lola,
Maria, MC-Kit, Pep, Prod, Tina (see [42] for tool descrip-
tions) as well as to our own toolbox Charlie [34], [37]. Addi-
tionally, an import of a restricted APNN file format supports
advanced model sharing with other Petri nets tools.

3.3 Extended Petri Net
This graph class enhances classical place/transition Petri

nets by four special arc types: read arcs, reset arcs, equal
arcs and inhibitor arcs. Consider the extended Petri net in
Figure 1:

• The transition t0 is connected with p0 by an inhibitor
arc. t0 is enabled, when p0 has less than two tokens.
The firing of t0 does not change the number of tokens
in p0.

• The transition t1 is connected with p0 by a read arc
and with p1 by a reset arc. t1 is enabled, when p0

has at least two tokens. If t1 fires, then the number of
tokens in p0 will not be changed, but p1 will become
empty.

• The transition t2 is connected with p0 by a read arc
and an inhibitor arc; and it is connected with p1 by a
reset and a normal arc. t2 is enabled, when p0 contains
exactly two tokens. If t2 fires, then the number of
tokens in p0 will not be changed, but p1 will have five
tokens.

• The transition t3 is connected with p0 by an equal arc.
t3 is enabled, when p0 has exactly two tokens. If t3
fires, it consumes these two tokens from p0.
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Figure 1: An extended place/transition Petri net,
demonstrating the four special arc types.

The token flow animation is available, with all the options
as for standard Petri nets, as well as exports to external
analysis tools. However, the special arc types are accepted
only in the export to the APNN file format, which supports
these graph elements.

3.4 Time Petri Net
This class enhances classical place/transition Petri nets

by time. Up to now, time constants or time intervals can
be associated with transitions only. The interpretation of
these time values as working or waiting (reaction) time is
left to the analysis tool. For the time being, the animation
does not consider these time restrictions. The net analysis
is supported by an export to the Integrated Net Analyser
(INA) [35].



Figure 2: Snoopy Screenshot.

3.5 Stochastic Petri Net
The class of stochastic Petri nets (SPNs) [22] associates a

probabilistically distributed firing rate (waiting time) with
each transition. Technically, various probability distribu-
tions can be chosen to determine the random values for the
transitions’ local timers.

However, if the firing rates of all transitions follow an ex-
ponential distribution, then the behaviour of the stochastic
Petri net can be described by a Markovian process. For
this purpose, each transition gets its particular, generally
marking-dependent parameter λ to specify its rate. The
marking-dependent transition rate λt(m) for the transition
t is defined by the stochastic hazard (propensity) function
ht. The domain of ht is restricted to the set of pre-places of
t, enforcing a close relation between network structure and
hazard functions. Therefore λt(m) actually depends only on
a sub-marking.

To support biochemically interpreted stochastic Petri nets,
special types of hazard functions are provided, among them
the mass-action propensity function and the level propensity
function, see [7] for details.

For illustration we give here one of the most famous ex-
amples of mathematical biology - the predator/prey system
(Lotka-Volterra system) - as stochastic Petri net, compare

Figure 3. It consists of two species, modelled as places:
the prey and the predator, and three reactions, modelled as
transitions: the reproduction of the prey, the consumption
of the prey, and the natural death of the predator.

Prey
1000

Predator
1000

reproduction_of_prey

consumption_of_prey

predator_death

2

2

Figure 3: The famous predator/prey example as
stochastic Petri net.

The three reactions follow the stochastic mass-action ki-
netics, which basically means that the reaction rates are pro-
portional to the current number of species involved. Having
the parameters of the species’ interactions (α - reproduc-
tion of prey, β - predator death, γ - consumption of prey),
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Figure 4: A Gillespie simulation of the stochastic
Petri net given in Figure 3.

we get the following pair of first order, non-linear stochastic
rate equations.

˙prey = α · prey − γ · prey · predator (1)

˙predator = γ · prey · predator − β · predator (2)

Applying Gillespie’s exact simulation algorithm [9], see
Algorithm 1 for a related pseudocode description, produces
data as given in the diagrams of Figure 4, describing the dy-
namic evolution of the biological system over time. Likewise,
the results may also be saved in a comma separated value
file for further examination by other tools, e.g. the Monte
Carlo Model Checker MC2 for probabilistic linear time logic
with numerical constraints [23].

Furthermore, two well-established extended stochastic Pe-
tri net classes are supported:

• The generalized stochastic Petri nets (GSPNs) supply
also inhibitor arcs, and immediate transitions.

• The deterministic and stochastic Petri nets (DSPNs)
provide additionally transitions with deterministic wait-
ing time.

Thus, DSPNs comprise GSPNs, which in turn comprise
SPNs.

Algorithm 1 Exact Gillespie algorithm for a stochastic
Petri net.

given:
SPN with initial marking m0;
simulation interval [t0, tmax];

time t := t0;
marking m := m0;
print(t,m);
while t < tmax do

determine duration τ until next firing;
t := t+ τ ;
determine transition tr firing at time t ;
m := fire(m, tr);
print(t,m)

end while

Special attention has been paid to the look and feel of the
graphical user interface to allow the experimentally working
biologist an intuitive and efficient model-based experiment
design. In this way, multiple initial markings, multiple func-
tion sets, and multiple parameter sets can be administrated
for each model structure [20].

An export to foreign tools providing complementary eval-
uation techniques is in preparation, as for example to PRISM
[27] to allow analytical stochastic model checking, to TimeNet
[47] to provide the standard Markovian transient and steady
state analysis techniques, or to Dizzy [28] to open access to
a wider range of stochastic and deterministic simulation al-
gorithms.

3.6 Continuous Petri Net
In a continuous Petri net [2] the marking of a place is no

longer an integer, but a positive real number. Transitions
fire continuously, whereby the current deterministic firing
rates generally depend on the current marking of the tran-
sitions’ pre-places, as in the case of stochastic Petri nets.
Please note, continuous nodes are drawn in bold lines to
distinguish them from the discrete ones, compare Figure 5.

Continuous Petri nets may be considered as a structured
approach to write systems of ordinary differential equations
(ODEs), which are commonly used for a quantitative de-
scription of biochemical reaction networks (compare section
4). Therefore, some equation patterns like mass action and
Michaelis Menten are supported by our tool [32]. As in the
stochastic case, the administration of multiple initial mark-
ings, multiple function sets, and multiple parameter sets is
supported. Read or inhibitor arcs may be used to spec-
ify the type of influence a species has on the reaction rate
(transition firing rate), with a read arc indicating direct pro-
portionality and an inhibitor arc indirect proportionality.

For simulation, a representative set of numerical algo-
rithms is implemented; 12 stiff or unstiff solvers are avail-
able, among them Runge-Kutta and Rosenbrock. Their
common algorithmic kernel is given in pseudocode notation
as Algorithm 2. The results can be displayed on-the-fly in
plots or saved in a comma separated value file for further
examination by other tools. Our solvers will not compete
with other dedicated tools, so we paid more attention on
dependability than performance.

Algorithm 2 Basic simulation algorithm for a continuous
Petri net.

given:
continuous Petri net with initial marking m0,

defining the function f ;
simulation interval [t0, tmax];
step size h < (tmax − t0);

time t := t0;
marking m := m0;
print(t,m);
while t < tmax do

t := t+ h;
m := m+ h · f(m);
print(t,m)

end while



There is an export of the continuous Petri net to the Sys-
tems Biology Markup Language (SBML) [44] in order to
connect to external analysis tools, popular in the systems bi-
ology community, as e.g. Copasi [38]. Moreover, the ODEs
defined by a continuous Petri net can be generated in LaTeX
style for documentation purposes.

Petri nets have been used in the synthetic biology project
iGEM [12] to design and construct a completely novel type of
self-powering electrochemical biosensor, called ElectrEcoBlu.
The novelty lies in the fact that the output signal is an elec-
trochemical mediator, which enables electrical current to be
generated in a microbial fuel cell. This was facilitated by the
entire team - molecular biologists and engineers/modellers
- working in an integrated laboratory environment, using
Petri nets as a communication means. The Petri net in Fig-
ure 5 generates exactly the ODEs as given in the equations
(3) - (6). The last term in equation (3) corresponds to the
positive feedback transition (given in grey in Figure 5).

Simulating the continuous Petri net, i.e. solving numer-
ically the underlying system of ordinary differential equa-
tions, we get diagrams as given in Figure 6.

˙TF = αT F − δT F · TF − βT F S · s · TF + kd · TFS (3)

+βT F
TFS

γT F + TFS

˙TFS = βT F S · s · TF − kd · TFS − δT F S · TFS (4)

˙PhzMS = βP hzMS
TFS

γP hzMS + TFS
− δP hzMS · PhzMS (5)

˙PY O = αP Y O · PhzMS − δP Y O · PY O (6)

TFS

TF

PhzMS

PYO

s5

beta_TFS*TF*skd*TFS

alpha_TF delta_TF*TF

beta_phzMS*TFS/(TFS+gamma_phzMS)

alpha_PYO*PhzMS

delta_PYO*PYO

delta_PhzMS*PhzMS

delta_TFS*TFS

beta_TF*TFS/(TFS+gamma_TF)

Figure 5: Continuous Petri net(s). The two system
versions differ in the transition given in grey, which
represents the positive feedback (pfb). For each
transition, the continuous rate equation is given.
Read arcs connect transitions with places, the mark-
ing of which influence the firing rates, but are not
changed by the firing. This continuous Petri net
generates exactly the ordinary differential equations
(3)–(6).

Figure 6: Dynamic behaviour of the continuous
Petri net given in Figure 5: (above) simple model,
(below) model with feedback. A closer look reveals
the speed up by the positive feedback.

3.7 MTBDD
For teaching purposes and documentation of smaller case

studies we implemented multi-terminal binary decision di-
agrams (MTBDD), which obviously comprise the standard
notion of binary decision diagrams (BDD) as special case.

M =


0 8 0 5
2 0 0 5
0 0 0 5
0 0 2 0
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Figure 7: A multi-terminal binary decision diagram
(MTBDD) to encode a sparse matrix. The two bi-
nary variables x1, x2 encode the four row indices,
while y1, y2 are responsible for the columns.

MTBDDs may be used, for example, to represent sparse
matrices, compare Figure 7. Every path to a terminal node
encodes the indices of a non-zero entry of a matrix M , the
value of which equals the terminal node’s value. MTBDDs
are often exploited to get concise representations of internal
data structures, as e.g. in the probabilistic model checker
PRISM [27].



3.8 Fault Tree
Fault trees describe the dependencies of component-based

systems in failure conditions and are commonly used in risk
management of systems with high dependability demands.
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Figure 8: Example of simultaneous use of fault tree
and Petri net (N-version programming).

Snoopy supports two flavours of fault trees, a basic and
an extended class. Both classes confine themselves to one
kind of arcs. The following node types are available in the
basic version, compare Figure 8:

• basic event: describes an elementary component fail-
ure,

• top event: models the breakdown of the system,

• intermediate event: introduces an internal event, which
depends on some basic events,

• coarse event: structures fault trees by hierarchies,

• comment node: for further descriptions,

• AND gate: all input signals must be set to trigger the
output,

• OR gate: one input signal must be set to trigger the
output,

• NEG gate: the input is negated.

Additionally, the following node types are available in ad-
vanced fault trees, compare Figure 9:

• XOR gate: exactly one input signal must be set to
trigger the output,

• m-of-n gate: m of n inputs must be set to trigger the
output,

• condition gate: the input must be set and a specified
boolean expression has to be true to trigger the output,

• condition parameter: defines the boolean expression
for the condition gate,

• undeveloped event: defines an event, which is not fur-
ther considered.
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Figure 9: Extended fault tree for a coffee machine.

Snoopy provides the qualitative and quantitative evalua-
tion of fault trees. The animation allows a stepwise or au-
tomatic visualization of the signal flows resulting in the sys-
tem breakdown. Moreover, minimal cut sets of basic events,
which result into the occurrence of the top event, can be
determined. That supports an easy identification of single
points of failure.

For a quantitative analysis several dependability measures
may be computed for repairable or non-repairable systems.
For example, reliability, probability of system failure, avail-
ability, mean time to failure, mean time between failures and
mean time to repair the system [19] can be computed.

3.9 Miscellaneous
The generic design of our graph tool allows an uncom-

plicated extension by new graph classes. For example EDL
signatures (a formalism to describe patterns of computer
network attacks) have been realized in [29]. Snoopy is also
involved in the tool chain of the embedded system design
approach presented in [10].

You might want to find your own favorite graph class in
a future version of this paper - we are open for suggestions
and cooperations.



4. CASE STUDIES
Snoopy has been utilized for teaching purposes and stu-

dents’ projects for quite a while. Moreover, it has been used
for a wide range of case studies, technical as well as biochem-
ical ones. The following list gives a rough overview and is
not meant to be exhaustive.

4.1 Overview

Technical and Academic Case Studies
• concurrent pusher [13]

• control software of a production cell [14]

• solitaire game, see [36] for a description of the mod-
elling idea

Biological Case Studies
• qualitative models of signal transduction or gene reg-

ulatory networks: apoptosis [16], haemorrhage [25],
mating pheromone response pathway in Saccharomyces
cerevisiae (yeast) [31], gene regulation of the Duchenne
muscular dystrophy [11].

• qualitative models of metabolic networks: combined
glycolysis/pentose phosphate pathway [30, 17], potato
tuber [18].

• qualitative as well as quantitative models of signal
transduction networks: ERK/RKIP [6], MAPK cas-
cade [7, 15], and extended gene expression networks:
biosensor [12].

4.2 Some Detailed Case Studies
We present three case studies demonstrating the system-

atic construction of larger models by composing suitable
reusable components. The composition principles rely on
two technical notions: (1) macro nodes, drawn as two cen-
tric squares (circles) and substituting transition-bordered
(place-bordered) subnets, allowing the design of hierarchi-
cal net models, and (2) logical (fusion) nodes, highlighted in
grey, and serving as connectors.

All three case studies employ ordinary place/transition
Petri nets, and the constructed models turn out to be 1-
bounded.

Peg Solitaire Game
Peg solitaire is a board game for one player. There exist
different versions, which differ in the number of pegs and
the layout of the board, compare Figure 10. Initially, one
peg lies on every position on the board, but one place must
be free. A peg may jump over a neighbouring peg and land
in a straight line on the next position, which must be free.
The overleaped peg will be removed from the board. The
goal of the game is to have finally left exactly one stone, at
best in the middle of the board.

The Petri net follows the modelling idea as introduced in
[36]. The different game versions are made of one building
block, compare Figure 11. Every position on the board is
represented by a place, which has a token when a peg is
on this position. Moreover, a counter place exists for every
position, which is marked with one token if there is no peg on

Figure 10: English and European version of the peg
solitaire board game.

Figure 11: Building block for one position of the
board game. In the middle are the two places mod-
elling the filled or empty state of the position, re-
spectively, while the other four place pairs corre-
spond to the four neighbour positions.
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Figure 12: Solitaire top level for the English version.
Each macro transition represents one position of the
board, and contains as many transitions as there are
neighbouring positions.



this position. These two places form a 1-P-invariant, and we
have 2 ·N places, if there are N positions on the board. The
Petri nets we get are 1-bounded by construction. A peg can
be overleaped from four directions, which is modelled with a
transition for each direction. The side condition of the free
target field is modelled by appropriate arcs.

We create a Petri net for the English and for the European
version, compare Figure 12, comprising 66 places / 76 tran-
sitions or 74 places / 92 transitions, respectively. The reach-
ability graph consists of 187 636 299 or 2 993 979 754 states,
respectively. The whole Petri nets are constructed by copy
and paste of the building block, rename of the node names,
and the automatic merge of the subnets by use of logical
places.

Control Software of a Production Cell
The production cell [14] represents a manufacturing system
and comprises six physical components: two conveyor belts,
a rotatable robot equipped with two extendable arms, an
elevating rotary table, a press, and a travelling crane. The
machines are organised in a (closed) pipeline, see Figure 13.
Their common goal is to transport and process metal blanks.
The production cycle of each blank is as follows: the feed
belt conveys the blank to an elevating rotary table. The
table rotates and rises in order to position the blank where
the first robot arm is able to grasp it. The robot fetches the
blank from the table and places it into the press. After it is
processed, the second robot arm removes the blank from the
press and places it on the deposit belt. A travelling crane is
artificially added to the model to ensure a permanent supply
by transporting the blank back to the feed belt and making
the model self-contained. Altogether, there are 14 sensors
and 34 actuators in the production cell.

Figure 13: Top view of the production cell.

We use Petri nets for the specification of the control pro-
gram for this production cell. We distinguish two abstrac-
tion levels in our step-wise modelling and analysis approach:
the cooperation model and the control model.

The more abstract cooperation model describes the syn-
chronisation of the machine controllers. The construction of
the model may be carried out bottom-up in the following
way. First, (three) general reusable patterns concerning the
intended communication behaviour of the controllers for the
physical devices are identified and modelled as Petri nets,

see Figure 14. These communication patterns are analysed.
Then, the complete model is constructed step-wise by com-
position of instances of these communication patterns via
merging of the so-called communication places.

Figure 14: Three types of communication pattern.

Having analysed the cooperation model successfully, re-
finements of places as well as of transitions are made by
modelling the interactions of the controllers with the hard-
ware interface (actuators, sensors) of the production cell.
Furthermore, this control model comprises a Petri net de-
scription of the environment, i.e. the controlled plant. As
before, the construction of the model is carried out bottom-
up. A general net structure for an elementary control proce-
dure is identified, which involves the controller part as well
as the environment part, of one basic motion step of any
device type. More complex processing step controls are con-
structed by combining elementary ones. Having modelled
and analysed the refined controllers separately, the control
model is composed as described above.
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Figure 15: Top level of the production cell Petri net,
closed version.

It is worth noting that the whole Petri net has been con-
structed systematically using extensively a very small set of
reusable components. The total Petri net consists of 231
places and 202 transitions, structured into 65 nodes of the
hierarchy tree. The size of the reachability graph ranges
from 30 954 to 7 185 779 depending on the initial marking
(number of plates in the production cell), see [14] for more
details.



Three-stage Signalling Cascade
This model of the mitogen-activated protein kinase (MAPK)
cascade was published in [21], specified as a system of ordi-
nary differential equations. It is the core of the ubiquitous
ERK/MAPK pathway that can, for example, convey cell di-
vision and differentiation signals from the cell membrane to
the nucleus. The description starts at the RasGTP complex
which acts as a kinase to phosphorylate Raf, which phospho-
rylates MAPK/ERK Kinase (MEK), which in turn phospho-
rylates Extracellular signal Regulated Kinase (ERK). This
cascade (RasGTP → Raf → MEK → ERK) of protein in-
teractions controls cell differentiation, the effect being de-
pendent upon the activity of ERK. We consider RasGTP as
the input signal and ERKPP (activated ERK) as the output
signal.

The scheme in Figure 16 describes in an informal way the
modular structure for such a signalling cascade, compare
[1]. Each layer corresponds to a distinct protein species.
The protein Raf in the first layer is only singly phospho-
rylated. The proteins in the two other layers, MEK and
ERK respectively, can be singly as well as doubly phospho-
rylated. In each layer, forward reactions are catalysed by ki-
nases and reverse reactions by phosphatases (Phosphatase1,
Phosphatase2, Phosphatase3). The kinases in the MEK and
ERK layers are the phosphorylated forms of the proteins in
the previous layer. Each phosphorylation/dephosphoryla-
tion step applies mass action kinetics according to the fol-
lowing pattern: A+E 
 AE → B+E, taking into account
the mechanism by which the enzyme acts, namely by form-
ing a complex with the substrate, modifying the substrate to
form the product, and a disassociation occurring to release
the product.

Raf RafP

MEKP MEKPPMEK

ERKP ERKPPERK

Phosphatase3

Phosphatase1

Phosphatase2

RasGTP

Figure 16: The general scheme of the considered sig-
nalling pathway: a three-stage double phosphoryla-
tion cascade. Each phosphorylation/dephosphory-
lation step applies the mass action kinetics pattern
A + E 
 AE → B + E. We consider RasGTP as the
input signal and ERKPP as the output signal.

Figure 17 shows basic Petri net components for some typ-
ical structures of biochemical reaction networks: 17(a) sim-
ple reaction A→ B; 17(b) reversible reaction A 
 B; 17(c)
hierarchical notation of 17(b); 17(d) simple enzymatic reac-
tion, Michaelis-Menten kinetics; 17(e) reversible enzymatic
reaction, Michaelis-Menten kinetics; 17(f) hierarchical nota-
tion of 17(e); 17(g) enzymatic reaction, mass action kinetics,
A+E 
 A E → B+E; 17(h) hierarchical notation of 17(g);
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Figure 17: Building blocks for biochemical signalling
cascades.
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Figure 18: The three-stage signalling cascade as
Petri net.



17(i) two enzymatic reactions, mass action kinetics, building
a cycle; 17(j) hierarchical notation of 17(i). Macro transi-
tions are used here as shortcuts for reversible reactions. Two
opposite arcs denote read arcs, see 17(d) and 17(e), estab-
lishing side conditions for a transition’s firing.

Assembling these components given in Figure 17 accord-
ing to the blueprint in Figure 16, we get the Petri net in Fig-
ure 18. Places (circles) stand for species (proteins, protein
complexes). Protein complexes are indicated by an under-
score “ ” between the constituent protein names. The suf-
fixes P or PP indicate phosphorylated or doubly phosphory-
lated forms respectively. The name Phase serves as shortcut
for Phosphatase. The species that are read as input/out-
put signals are given in grey. Transitions (squares) stand
for irreversible reactions, while macro transitions (two con-
centric squares) specify reversible reactions, compare Fig-
ure 17. The initial state is systematically constructed using
standard Petri net analysis techniques. The Petri net model
contains 22 places and 30 transitions. The state spaces for
this model range from 118 to 1.7 ∗ 1021, depending on the
initial marking (granularity of the circulating mass).

At the bottom of Figure 18 the two-line result vector as
produced by Charlie [37] is given. Assigning mass-action ki-
netics to all transitions and reading the net as a continuous
Petri net generates exactly the ordinary differential equa-
tions according to [21]. An exhaustive description of the
analysis is beyond the scope of this paper and is presented
in [15].

5. IMPLEMENTATION

5.1 General Information
Snoopy was started in 1997 as a student’s project [24],

[5] and it is still under development and maintenance. It
is based on the experience gathered by its predecessor PED
[40], which it replaces.

The tool is written in the programming language C++
using the Standard Template Library. A crucial point of
the development is its platform-independent realisation, so
Snoopy is now available for Windows and Linux operating
systems. A first version for Apple/Macintosh has been re-
cently released. For this purpose, the graphical user inter-
face employs the framework wxWidgets [45].

The object-oriented design uses several standard design
patterns (especially Model View Controller, Prototype, and
Builder), thus special requirements may be added easily.
Due to a strict separation of internal data structures and
graphical representation it is straightforward to extend Snoo-
py by a new graph class applying reuse and specialization
of existing elements. As usual, a similar base class has to
be selected, inherited elements can be overwritten and new
ones can be added from the pool of available templates.

5.2 Internal Data Structures
The main object in the data structure is the graph object

which contains methods for modifications and holds the as-
sociated node classes and edge classes. Every nodeclass has

one node prototype and a list of nodes that are copies from
this prototype. The edgeclass is similarly structured, as it
can be seen in Figure 19. Every node and every edge can
have a list of attributes defining the properties of the graph
elements.

Figure 19: Internal data structure.

Figure 20: Graphics assigned to the graph elements.

Figure 21: Attributes are connected with window
interaction controls.



A graphic is assigned to every displayed element, see Fig-
ure 20. Attributes of graph elements may be manipulated
by widgets as it is shown in Figure 21. This architecture fa-
cilitates the addition of new graph classes in Snoopy, demon-
strated in the next subsection.

5.3 Implementation of a new Graph Class
For a better understanding of the following example, we

give a short introduction into our naming convention. The
name of each implemented class starts with ”SP ” in Snoopy,
followed by one of the prefixes, defining the scope of the class
(here a few are given only):

• ”DS”: element of the data structure,

• ”GR”: element of the graphics,

• ”GRM”: event handler for graphical elements,

• ”GUI”: graphical user interface elements,

• ”WDG”: window interaction element widget,

• ”DLG”: window dialog.

We demonstrate the extension of Snoopy by a new graph
class called modulo net, which has been introduced in [26]
to detect and correct operation errors in distributed sys-
tems. Modulo nets are basically qualitative place / transi-
tion nets extended by undirected arcs and a global integer
number P . All adjacent arcs of a place are (exclusively)
either conventionally directed arcs or undirected arcs. The
firing of a transition changes the marking of a place con-
nected by an undirected arc according to the following rule:
(number of tokens+arc weight) mod P ; see Figure 22 for
an example.

count1 count2

count2
4

count1

count1 count2

count1 count2

t1 t2

t2t1

t1 t2

t1 t2

m0 m1

m6 m9
5

Figure 22: A modulo net and four of its nine mark-
ings. The two places count1, count2 count modulo 5
the number of the transitions’ occurrences. Obvi-
ously, they can only differ by 1 (modulo 5) in any
reachable marking.

The new graph class must inherit from an existing base
class and should overwrite the function ”CreateGraph”. In
listing 1 in the appendix the class ”SP DS ModuloNets” in-
herits from the base class ”SP DS SimplePed”.

In listing 2 in the appendix the implementation of the
method ”CreateGraph”calls on line 4 and 5 the homonymous
method from ”SP DS SimplePed”and inserts afterwards the
Modulo Net class’s special elements.

Furthermore, a special animator class is assigned to the
places (see listing 2 in the appendix, line 14-15). This class
calculates the token change according to the semantics of
the undirected arcs (see listing 4). Afterwards the new undi-
rected edge class is added in listing 2 in the appendix, lines
17-24 (please note, arcs are named edges in the implemen-
tation). The shape of the arc is defined in listing 2 in the
appendix, lines 18-19. In lines 21-24 the attribute multiplic-
ity with its widget and graphical representation is added to
the undirected arc.

Finally, the functions ”NodeRequirement” and ”EdgeRe-
quirement” have to be overwritten to ensure the given con-
straints over inserted nodes or arcs.

The whole implementation of the new graph class com-
prises about 350 lines of code and can be done by an expe-
rienced user within one day.

6. FUTURE WORK
The import of biochemical network models from KEGG

and SBML data formats is about to be released [33], which
will allow the direct re-use and re-engineering of models from
the systems biology community.

There is a well-known (syntactically) close relation be-
tween biochemically interpreted stochastic and continuous
Petri nets. Obviously, an automatic conversions of the sto-
chastic and continuous rate functions into each other could
be of help for the investigation of related biochemical net-
work models.

Up to now, we consider pure net classes only, meaning
all nodes have to be either discrete or continuous ones. We
need hybrid nets to integrate both aspects into one model.
Hybrid models might help to investigate the interrelations
between the discrete and continuous parts of a network.

An ongoing student’s project aims at managing and ex-
ecuting animation sequences, especially counter examples
produced by external analysis tools. Another projects in-
vestigates automatic coarsening of network structures.

Finally, a PNML [41] import and export will be imple-
mented as soon as a (preliminary) final standard will be
available.
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APPENDIX

Listing 1: Extract of SP DS ModuloNets.h
1 class SP DS ModuloNets : public SP DS SimplePed
2 {
3 SP DS ModuloNets ( ) ;
4 SP DS ModuloNets ( const char∗ p pchName ) ;
5
6 SP DS Graph∗ CreateGraph ( SP DS Graph∗ p pcGraph ) ;
7
8 bool NodeRequirement ( SP DS Node∗ p pcNode ) ;
9 bool EdgeRequirement (

10 SP DS Edgeclass∗ p pcEdgeclass ,
11 SP Data∗ p pcNode1 ,
12 SP Data∗ p pcNode2 ) ;
13 } ;

Listing 2: Implementation of CreateGraph
1 SP DS Graph∗
2 SP DS ModuloNets : : CreateGraph ( SP DS Graph∗ p graph )
3 {
4 i f ( ! SP DS SimplePed : : CreateGraph ( p graph ) ) return NULL;
5
6 SP DS Nodeclass∗ l pcNodeClass ;
7 SP DS Edgeclass∗ l pcEdgeClass ;
8 SP DS Attribute∗ l p cAt t r ;
9 SP Graphic∗ l pcGrAttr ;

10 SP GR Node∗ l pcGrNode ;
11
12 l pcNodeClass = p graph−>GetNodeclass ( ”Place ”) ;
13 l pcNodeClass−>AddAnimator (new SP DS ModNetPlAnimator ( ”Marking ”) ) ;
14
15 l pcEdgeClass = p graph−>AddEdgeclass ( new SP DS Edgeclass ( p graph , ”Undirected Edge ”) ) ;
16 l pcGrEdge = new SP GR NoArrowEdge( l pcEdgeClass−>GetPrototype ( ) , 0 , 0 , 0 ) ;
17 l pcEdgeClass−>SetGraphic ( l pcGrEdge ) ;
18
19 l pcAt t r =l pcEdgeClass−>AddAttribute (new SP DS Mult ip l i c i tyAtt r ibute ( ” M u l t i p l i c i t y ”) ) ;
20 l pcAttr−>RegisterDia logWidget (new SP WDG DialogUnsigned ( ”General ” , 1) ) ;
21 l pcGrAttr = l pcAttr−>AddGraphic (new SP GR Mult ip l i c i tyAttr ibute ( l pcAt t r ) ) ;
22 l pcGrAttr−>SetShow (TRUE) ;
23
24 l pcNodeClass = p graph−>AddNodeclass (new SP DS Nodeclass ( p graph , ”Modulo ”) ) ;
25 l pcAt t r = l pcNodeClass−>AddAttribute (new SP DS NumberAttribute ( ”Modulo ” , 1) ) ;
26 l pcAttr−>RegisterDia logWidget (new SP WDG DialogUnsigned ( ”General ”) ) ;
27 l pcGrAttr = l pcAttr−>AddGraphic (new SP GR TextAttribute ( l pcAt t r ) ) ;
28 l pcGrNode = new SP GR ExtendedDoubleParameterSymbol ( l pcNodeClass−>GetPrototype ( ) ) ;
29 l pcNodeClass−>SetGraphic ( l pcGrNode ) ;
30 l pcNodeClass−>RegisterGraphicWidget (new SP WDG DialogGraphic ( ”Graphic ”) ) ;
31 return p graph ;
32 }// end CreateGraph

Listing 3: Extract of SP DS ModNetPlAnimator.h
1 class SP DS ModNetPlAnimator : public SP DS PlaceAnimator
2 {
3 private :
4 long m nModToken ;
5 protected :
6 virtual bool DecrementMark ( ) ;
7 long DecrementedMarking ( SP List<SP DS Edge∗>∗ p edges , long p tokens ) ;
8 public :



9 SP DS ModNetPlAnimator ( const char∗ p pchAttributeName ,
10 SP DS Animation∗ p pcAnim = NULL,
11 SP DS Node∗ p pcParent = NULL) ;
12 virtual ˜SP DS ModNetPlAnimator ( ) ;
13 } ;

Listing 4: Implementation of DecrementedMarking
1 long SP DS ModNetPlAnimator : : DecrementedMarking ( SP List<SP DS Edge∗>∗ p edges , long

p tokens )
2 {
3 i f ( ! p edges ) return p tokens ;
4 long l nOldVal = m pcAttribute−>GetValue ( ) ;
5 SP DS Graph∗ l pcGraph = SP Core : : In s tance ( )−>GetRootDocument ( )−>GetGraph ( ) ;
6 SP DS Nodeclass∗ l p cNodec l a s s = l pcGraph−>GetNodeclass ( ”Modulo ”) ;
7 SP DS Node∗ l pcNode = static cast<SP DS Node∗>(∗ l pcNodec las s−>GetElements ( )−>begin ( ) ) ;
8 wxString l sModuloVal = wxT( l pcNode−>GetAttr ibute ( ”Modulo ”)−>GetValueStr ing ( ) ) ;
9 long l nModuloVal ;

10 l sModuloVal . ToLong(&l nModuloVal ) ;
11
12 SP DS Attribute∗ l p cAt t r ;
13 SP List<SP DS Edge∗> : : i t e r a t o r l e I t ;
14
15 for ( l e I t = p edges−>begin ( ) ; l e I t != p edges−>end ( ) ; ++l e I t )
16 {
17 i f ( strcmp ((∗ l e I t )−>GetClassName ( ) , ”Undirected Edge ”) == 0 )
18 {
19 l pcAt t r = (∗ l e I t )−>GetFirstAttributeByType (SP ATTRIBUTE MULTIPLICITY) ;
20 i f ( l p cAt t r )
21 {
22 long l nArcMult i = static cast<SP DS Mult ip l i c i tyAtt r ibute∗> ( l p cAt t r )−>GetValue ( ) ;
23 m nModToken += ( l nOldVal + l nArcMult i ) % l nModuloVal ;
24 }//end i f
25 }//end i f
26 }//end f o r
27
28 return m nModToken ;
29 }//end DecrementedMarking
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