FUNLITE -
A PARALLEL PETRI NET SIMULATOR

Jochen Spranger

jsp@informatik.tu-cottbus.de
http://www.informatik.tu-cottbus.de
INTRODUCTION:

- Provably error-free control software for manufacturing systems
- Live 1-bounded hierarchical Place/Transition nets
- Parallel Petri Net simulator to simulate the tokenflow of a Petri Net
- Goals:
 - fast execution speed
 - low memory consumption
 - low communication overhead
- Transputer system (T9000 & C104)
 INMOS C (CSP model of parallel programming)
PRELIMINARIES:

- Simulation of the tokenflow:
 - the control code is assigned to the transitions
 - the execution of a transition is atomic!

- Problems:
 - Parallelity
 - Conflict resolution
THE SEQUENTIAL PETRI NET SIMULATOR

- **Main problem:**
 speed of the transition enabling test

- **The counter method:**
 - one counter for each transition representing the number of unmarked pre-places
 i.e. \(\text{counter}(t) = 0 \Rightarrow t \text{ enabled} \)
 - after the firing of \(t \), we only have to consider \(t, (\bullet t)^* \) and \((t^\bullet)^* \)

- For each transition \(t' \) in \((\bullet t)^* \)
 we increase the counter of \(t' \)
 by the number of common pre-places with \(t \)

- For each transition \(t' \) in \((t^\bullet)^* \)
 we decrease the counter of \(t' \)
 by the number of common places between the pre-places of \(t' \) and the post-places of \(t \)
COMMUNICATION PLACES:

- Post-communication places

- Pre-many-to-1 communication places

- Pre-many-to-many communication places
Locksets:

- simple conflict resolution
- atomar allocation of more than one token

Goals:

Locksets: (disjointed sets of many-to-many communication places)

Definition: A lockset \(l \) is a minimal set of many-to-many communication places such that holds:

If there are transitions \(t,t' \in T \) with \(\bullet t \cap \bullet t' \)
contains many-to-many communication places of \(l \) then the lockset \(l \) contains all many-to-many communication places of \(\bullet t \cup \bullet t' \).
IMPLEMENTATION:

A lockset \(l \) is implemented by:

- For each transition \(t \) with a many-to-many communication place in \(l \) we introduce a counter representing the number of missing communication place tokens.

- For each place \(p \) in \(l \) we generate an input process which waits for an arriving token and updates the counters of the corresponding transitions.

- An administration process which reacts on token requests from subnets.
CONCLUSION:

- fast and simple conflict resolution
- fast transition enabling test
- minimal network traffic
- low memory consumption

suited for small systems