SYSTEMS BIOLOGY
- A PETRI NET PERSPECTIVE -

WHAT HAVE
TECHNICAL AND NATURAL SYSTEMS
IN COMMON?

Monika Heiner
Brandenburg University of Technology Cottbus
Dept. of CS
LONG-TERM VISION

MEDICAL TREATMENT
LONG-TERM VISION

MEDICAL TREATMENT, APPROACH 1- TRIAL-AND-ERROR DRUG PRESCRIPTION
LONG-TERM VISION

MEDICAL TREATMENT, APPROACH 1- TRIAL-AND-ERROR DRUG PRESCRIPTION
LONG-TERM VISION

MEDICAL TREATMENT, APPROACH 1- TRIAL-AND-ERROR DRUG PRESCRIPTION

monika.heiner@informatik.tu-cottbus.de

July 2006
LONG-TERM VISION

MEDICAL TREATMENT, APPROACH 2
LONG-TERM VISION

MEDICAL TREATMENT, APPROACH 2 - MODEL-BASED DRUG PRESCRIPTION

monika.heiner@informatik.tu-cottbus.de

July 2006
LONG-TERM VISION

MEDICAL TREATMENT, APPROACH 2 - MODEL-BASED DRUG PRESCRIPTION
LONG-TERM VISION

MEDICAL TREATMENT, APPROACH 2 - MODEL-BASED DRUG PRESCRIPTION
LONG-TERM VISION

MEDICAL TREATMENT, APPROACH 2 - MODEL-BASED DRUG PRESCRIPTION
WHAT KIND OF MODEL SHOULD BE USED?
BIOLOGICAL FUNCTION?
BY INTERACTION IN NETWORKS
NETWORK REPRESENTATIONS, Ex2

\[
\begin{align*}
\frac{d\alpha}{dt} &= -v_1 \\
\frac{d\text{Ste2}}{dt} &= -v_2 + v_3 - v_5 \\
\frac{d\text{Ste2}_{\text{active}}}{dt} &= v_2 - v_3 - v_4 \\
\frac{dS\text{st2}_{\text{active}}}{dt} &= v_46 - v_47 \\
\frac{dG\alpha \beta \gamma}{dt} &= -v_6 + v_9 \\
\frac{dG\alpha \text{GTP}}{dt} &= v_6 - v_7 - v_8 \\
\frac{dG\alpha \text{GDP}}{dt} &= v_7 + v_8 - v_9 \\
\frac{dG\beta \gamma}{dt} &= v_6 - v_9 - v_{10} + v_{11} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} - v_{42} + v_{43} \\
\frac{d\text{Ste5}}{dt} &= -v_{12} + v_{13} + v_{17} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\
\frac{d\text{Ste11}}{dt} &= -v_{12} + v_{13} + v_{17} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\
\frac{d\text{Ste7}}{dt} &= -v_{14} + v_{15} + v_{17} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\
\frac{d\text{Fus3}}{dt} &= -v_{14} + v_{15} + v_{17} + v_{21} + v_{23} + v_{25} + v_{27} - v_{29} + v_{30} + v_{33} \\
\frac{d\text{Ste20}}{dt} &= -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32}
\end{align*}
\]

\[
\begin{align*}
v_1 &= \alpha[t] \cdot \text{Bar} I_{\text{active}}[t] \cdot k_1 \\
v_2 &= \text{Ste2}[t] \cdot \alpha[t] \cdot k_2 \\
v_3 &= \text{Ste2}_{\text{active}}[t] \cdot k_3 \\
v_4 &= \text{Ste2}_{\text{active}}[t] \cdot k_4 \\
v_5 &= \text{Ste2}[t] \cdot k_5 \\
v_6 &= \text{Ste2}_{\text{active}}[t] \cdot G\alpha \beta \gamma[t] \cdot k_6 \\
v_7 &= G\alpha \text{GTP}[t] \cdot k_7 \\
v_8 &= G\alpha \text{GTP}[t] \cdot S\text{st2}_{\text{active}}[t] \cdot k_8 \\
v_9 &= G\alpha \text{GDP}[t] \cdot G\beta \gamma[t] \cdot k_9 \\
v_{10} &= G\beta \gamma[t] \cdot C[t] \cdot k_{10} \\
v_{11} &= D[t] \cdot k_{11} \\
v_{12} &= \text{Ste5}[t] \cdot \text{Ste11}[t] \cdot k_{12} \\
v_{13} &= A[t] \cdot k_{13} \\
v_{14} &= \text{Ste7}[t] \cdot \text{Fus3}[t] \cdot k_{14} \\
v_{15} &= B[t] \cdot k_{15} \\
v_{16} &= A[t] \cdot B[t] \cdot k_{16} \\
v_{17} &= C[t] \cdot k_{17} \\
v_{18} &= D[t] \cdot \text{Ste20}[t] \cdot k_{18}
\end{align*}
\]
WHAT IS A BIOCHEMICAL NETWORK MODEL?

- **structure**

- **kinetics**, if you can
 \[
 \frac{d[Raf1^*]}{dt} = k1*m1*m2 + k2*m3 + k5*k4
 \]
 \[k1 = 0.53, k2 = 0.0072, k5 = 0.0315\]

- **initial conditions**
 \[[Raf1^*]_{t=0} = 2 \mu\text{Molar} \]
BIONETWORKS, SOME PROBLEMS

- knowledge
 -> uncertain
 -> growing, changing
 -> time-consuming wet-lab experiments
 -> some data estimated
 -> distributed over independent data bases, papers, journals, . . .

- various, mostly ambiguous representations
 -> verbose descriptions
 -> diverse graphical representations
 -> contradictory and / or fuzzy statements

- network structure
 -> tend to grow fast
 -> dense, apparently unstructured
 -> hard to read
BIONETWORKS, SOME PROBLEMS

- **knowledge**
 - uncertain
 - growing, changing
 - time-consuming wet-lab experiments
 - some data estimated
 - distributed over independent data bases, papers, journals, . . .

- **various, mostly ambiguous representations**
 - verbose descriptions
 - diverse graphical representations
 - contradictory and/or fuzzy statements

- **network structure**
 - tend to grow fast
 - dense, apparently unstructured
 - hard to read

.models are full of assumptions.
BIONETWORKS, SOME PROBLEMS
FRAMEWORK

bionetworks knowledge

quantitative modelling

quantitative models

animation / analysis / simulation

understanding
model validation
quantitative behaviour prediction

ODEs
FRAMEWORK

bionetworks knowledge

quantitative parameters

qualitative models

qualitative modelling

quantitative modelling

quantitative models

quantitative models

animation / analysis

animation / analysis /simulation

understanding

model validation

qualitative behaviour prediction

model checking

Petri net theory (invariants)

ODEs

model validation

quantitative behaviour prediction

understanding
FRAMEWORK

- bionetworks knowledge
 - qualitative modelling
 - qualitative models
 - animation / analysis
 - quantitative parameters
 - quantitative models
 - animation / analysis /simulation
 - quantitative behaviour prediction
 - model validation
 - understanding
 - model checking
 - Petri net theory
 (invariants)
 - reachability graph
 linear inequalities
 - linear programming
 ODEs
BIO PETRI NETS -
AN INFORMAL CRASH COURSE
atomic actions -> Petri net transitions -> chemical reactions

2 NAD^+ + 2 H_2O -> 2 NADH + 2 H^+ + O_2
atomic actions -> Petri net transitions -> chemical reactions

2 NAD$^+$ + 2 H$_2$O \rightarrow 2 NADH + 2 H$^+$ + O$_2$

Diagram: Petri net with transitions and compounds.
PETRI NETS, BASICS - THE STRUCTURE

- atomic actions -> Petri net transitions -> chemical reactions

\[2 \text{NAD}^+ + 2 \text{H}_2\text{O} \rightarrow 2 \text{NADH} + 2 \text{H}^+ + \text{O}_2 \]

- local conditions -> Petri net places -> chemical compounds
PETRI NETS, BASICS - THE STRUCTURE

- **atomic actions** -> Petri net transitions -> chemical reactions

 \[2 \text{NAD}^+ + 2 \text{H}_2\text{O} \rightarrow 2 \text{NADH} + 2 \text{H}^+ + \text{O}_2\]

- **local conditions** -> Petri net places -> chemical compounds

- **multiplicities** -> Petri net arc weights -> stoichiometric relations
PETRI NETS, BASICS - THE STRUCTURE

- atomic actions -> Petri net transitions -> chemical reactions

 2 NAD\(^+\) + 2 H\(_2\)O \rightarrow 2 NADH + 2 H\(^+\) + O\(_2\)

- local conditions -> Petri net places -> chemical compounds

- multiplicities -> Petri net arc weights -> stoichiometric relations

- condition’s state -> token(s) in its place -> available amount (e.g. mol)

- system state -> marking -> compounds distribution
PETRI NETS, BASICS - THE STRUCTURE

- **atomic actions** -> Petri net transitions -> chemical reactions

 \[2 \text{NAD}^+ + 2 \text{H}_2\text{O} \rightarrow 2 \text{NADH} + 2 \text{H}^+ + \text{O}_2 \]

- **local conditions** -> Petri net places -> chemical compounds

- **multiplicities** -> Petri net arc weights -> stoichiometric relations

- **condition’s state** -> token(s) in its place -> available amount (e.g. mol)

- **system state** -> marking -> compounds distribution

- **PN = (P, T, F, m_0)**, \[F: (P \times T) \cup (T \times P) \rightarrow \mathbb{N}_0, \] \[m_0: P \rightarrow \mathbb{N}_0 \]
atomic actions -> Petri net transitions -> chemical reactions

2 NAD$^+$ + 2 H$_2$O \rightarrow 2 NADH + 2 H$^+$ + O$_2$
atomic actions -> Petri net transitions -> chemical reactions

2 NAD$^+$ + 2 H$_2$O \rightarrow 2 NADH + 2 H$^+$ + O$_2$
atomic actions -> Petri net transitions -> chemical reactions

2 NAD$^+$ + 2 H$_2$O \rightarrow 2 NADH + 2 H$^+$ + O$_2$
r1: A \rightarrow B
r1: A -> B
r2: B -> C + D
r3: B -> D + E

-> alternative reactions
r1: A → B
r2: B → C + D
r3: B → D + E
r4: F → B + a
r6: C + b → G + c
r7: D + b → H + c

-> concurrent reactions
r1: A -> B
r2: B -> C + D
r3: B -> D + E
r4: F -> B + a
r5: E + H <-> F
r6: C + b -> G + c
r7: D + b -> H + c
r8: H <-> G

-> reversible reactions
r1: A -> B
r2: B -> C + D
r3: B -> D + E
r4: F -> B + a
r5: E + H <-> F
r6: C + b -> G + c
r7: D + b -> H + c
r8: H <-> G

-> reversible reactions
- hierarchical nodes
r1: A -> B
r2: B -> C + D
r3: B -> D + E
r4: F -> B + a
r5: E + H <-> F
r6: C + b -> G + c
r7: D + b -> H + c
r8: H <-> G
r9: G + b -> K + c + d
r10: H + 28a + 29c -> 29b
r11: d -> 2a
r1: A \rightarrow B
r2: B \rightarrow C + D
r3: B \rightarrow D + E
r4: F \rightarrow B + a
r5: E + H \leftrightarrow F
r6: C + b \rightarrow G + c
r7: D + b \rightarrow H + c
r8: H \leftrightarrow G
r9: G + b \rightarrow K + c + d
r10: H + 28a + 29c \rightarrow 29b
r11: d \rightarrow 2a
r1: A -> B
r2: B -> C + D
r3: B -> D + E
r4: F -> B + a
r5: E + H <-> F
r6: C + b -> G + c
r7: D + b -> H + c
r8: H <-> G
r9: G + b -> K + c + d
r10: H + 28a + 29c -> 29b
r11: d -> 2a
BIOLOGICAL SYSTEMS, INTRO

r1: A \rightarrow B
r2: B \rightarrow C + D
r3: B \rightarrow D + E
r4: F \rightarrow B + a
r5: E + H \leftrightarrow F
r6: C + b \rightarrow G + c
r7: D + b \rightarrow H + c
r8: H \leftrightarrow G
r9: G + b \rightarrow K + c + d
r10: H + 28a + 29c \rightarrow 29b
r11: d \rightarrow 2a

INPUT FROM ENVIRONMENT

OUTPUT TO ENVIRONMENT
BIOCHEMICAL PETRI NETS, SUMMARY

- **biochemical networks**
 - networks of (abstract) chemical reactions

- **biochemically interpreted Petri net**
 - partial order sequences of chemical reactions (= elementary actions) transforming input into output compounds / signals
 - set of all pathways from the input to the output compounds / signals

- **pathway**
 - self-contained partial order sequence of elementary (re-) actions
TYPICAL BASIC STRUCTURES

- metabolic networks
 -> substance flows

- signal transduction networks
 -> signal flows
A CASE STUDY
...one pathway...

Mitogens
Growth factors

Receptor

Ras

Raf

MEK

ERK

cytoplasmic substrates

Elk SAP

Gene
THE RKIP PATHWAY

[Cho et al., CMSB 2003]
THE RKIP PATHWAY, PETRI NET

K11

K8

K5

K10

K9

K7

K6

K4

K3

K2

K1

RP

M10

RKIP-P

ERK

M5

MEK-PP

M7

MEK-PP

ERK

M6

RKIP-P

M11

RKIP-P_RP

M3

Raf-1Star_RKIP

M4

Raf-1Star_RKIP_ERK-PP

M9

ERK-PP

M8

MEK-PP_ERK

M2

RKIP

M1

Raf-1Star

M1

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11
THE RKIP PATHWAY, HIERARCHICAL PETRI NET

monika.heiner@informatik.tu-cottbus.de

July 2006
THE RKIP PATHWAY, HIERARCHICAL PETRI NET

initial marking
THE RKIP PATHWAY, HIERARCHICAL PETRI NET

initial marking

CONSTRUCTED BY PN ANALYSIS
QUALITATIVE ANALYSES
ANALYSIS TECHNIQUES, OVERVIEW

- **static analyses**
 -> no state space construction
 -> structural properties (graph theory, combinatorial algorithms)
 -> P / T - invariants (discrete computational geometry),

- **dynamic analyses**
 -> total / partial state space construction
 -> state space representations: *interleaving* (RG) / *partial order* (prefix)

- analysis of general behavioural system properties,
 e.g. boundedness, liveness, reversibility, . . .

- model checking of special behavioural system properties,
 e.g. reachability of a given (sub-) system state [with constraints],
 reproducability of a given (sub-) system state [with constraints]

 expressed in temporal logics (CTL / LTL),
 very flexible, powerful query language
STATIC
ANALYSES
INCIDENCE MATRIX C

- **a representation of the net structure**

 $C = \begin{array}{c|cccc}
 p & t_1 & \ldots & t_j & \ldots & t_m \\
 \hline
 p_1 & & & & \\
 p_i & & & c_{ij} & \\
 \vdots & & & \Delta t_j & \\
 p_n & & & & \\
 \end{array}$

 $c_{ij} = (p_i, t_j) = F(t_j, p_i) - F(p_i, t_j) = \Delta t_j(p_i)$

 $\Delta t_j = \Delta t_j(\ast)$

- **matrix entry c_{ij}:**
 token change in place p_i by firing of transition t_j

- **matrix column Δt_j:**
 vector describing the change of the whole marking by firing of t_j

- **side-conditions are neglected**

 ![Diagram](image)

 $c_{ij} = 0$
P-invariants, Basics

- Lautenbach, 1973

- P-invariants
 - integer solutions y of $yC = 0, y \neq 0, y \geq 0$
 - minimal P-invariants
 - there is no P-invariant with a smaller support
 - gcd of all entries is 1

- any P-invariant is a non-negative linear combination of minimal ones
 - multiplication with a positive integer
 - addition
 - Division by gcd

- Covered by P-Invariants (CPI)
 - each place belongs to a P-invariant
 - CPI \Rightarrow BND (sufficient condition)
P-invariants, interpretation

- The firing of any transition has no influence on the weighted sum of tokens on the P-invariant’s places.
 - For all \(t \): the effect of the arcs, removing tokens from a P-invariant’s place is equal to the effect of the arcs, adding tokens to a P-invariant’s place.

- Set of places with:
 - A constant weighted sum of tokens for all markings \(m \) reachable from \(m_0 \):
 \[y_m = y_{m_0} \]
 - Token/compound preservation
 - Moieties
 - A place belonging to a P-invariant is bounded

- A P-invariant defines a subnet:
 - The P-invariant’s places (the support),
 - All their pre- and post-transitions
 - The arcs in between
 - Pre-sets of supports = post-sets of supports
 - Self-contained, cyclic
The RKIP Pathway, P-Invariants

P-INV1: MEK
P-INV2: RAF-1STAR
P-INV3: RP
P-INV4: ERK
P-INV5: RKIP
T-INVARIANTS, BASICS

- Lautenbach, 1973

- **T-invariants**
 - integer solutions x of $Cx = 0$, $x \neq 0$, $x \geq 0$ -> multisets of transitions
 - Parikh vector

- **minimal T-invariants**
 - there is no T-invariant with a smaller support -> sets of transitions
 - \gcd of all entries is 1

- any T-invariant is a non-negative linear combination of minimal ones
 - multiplication with a positive integer
 - addition
 - Division by \gcd

- **Covered by T-Invariants (CTI)**
 - each transition belongs to a T-invariant
 - $BND \& LIVE \Rightarrow CTI$ (necessary condition)
T-INVARIENTS, INTERPRETATIONS

- **T-invariants** = (multi-) sets of transitions = Parikh vector
 - zero effect on marking
 - reproducing a marking / system state

- **two interpretations**
 1. relative transition firing rates of transitions occurring permanently & concurrently
 - steady state behaviour
 2. partially ordered transition sequence of transitions occurring one after the other
 - substance / signal flow

- a T-invariant defines a subnet
 - the T-invariant’s transitions (the support), + all their pre- and post-places + the arcs in between
 - pre-sets of supports = post-sets of supports

- zero effect on marking
- reproducing a marking / system state
- relative transition firing rates of transitions occurring permanently & concurrently
- steady state behaviour
- partially ordered transition sequence of transitions occurring one after the other
- substance / signal flow
- pre-sets of supports = post-sets of supports
THE RKIP PATHWAY, NON-TRIVIAL T-INARIANT

-> non-trivial T-invariant
+ four trivial ones for reversible reactions
CONSTRUCTION OF THE INITIAL MARKING

- each P-invariant gets at least one token
 -> *P*-invariants are structural deadlocks and traps

- in signal transduction
 -> exactly 1 token, corresponding to species conservation
 -> token in least active state

- all (non-trivial) T-invariants get realizable
 -> to make the net live

- minimal marking
 -> minimization of the state space
CONSTRUCTION OF THE INITIAL MARKING

- each P-invariant gets at least one token
 - P-invariants are structural deadlocks and traps

- in signal transduction
 - exactly 1 token, corresponding to species conservation
 - token in least active state

- all (non-trivial) T-invariants get realizable
 - to make the net live

- minimal marking
 - minimization of the state space

- UNIQUE INITIAL MARKING
NON-TRIVIAL T-IN Variant, RUN

- realizability check under the constructed marking
- T-invariant’s unfolding to describe its behaviour
 -> partial order structure
- labelled condition / event net
 -> events (boxes)
 - transition occurrences
 -> conditions (circles)
 - involved compounds
- occurrence net
 -> acyclic
 -> no backward branching conditions
 -> infinite
DYNAMIC ANALYSES
Dynamic Analysis - Reachability Graph

- simple construction algorithm
 - nodes - system states
 - arcs - the (single) firing transition -> single step firing rule
simple construction algorithm

- nodes - system states
- arcs - the (single) firing transition
 -> single step firing rule

s1
simple construction algorithm

- nodes - system states
- arcs - the (single) firing transition

single step firing rule
simple construction algorithm

- nodes - system states
- arcs - the (single) firing transition

- single step firing rule
simple construction algorithm

- nodes - system states
- arcs - the (single) firing transition -> single step firing rule

Diagram:

- Nodes: s1, s2, s3, s4
- Arrows (arcs):
 - k1 from s1 to s2
 - k2 from s1 to s2
 - k3 from s2 to s3
 - k4 from s2 to s3
 - k5 from s3 to s4
RKIP Pathway, Reachability Graph
property 1

Is a given (sub-) marking (system state) reachable?

\[EF(ERK \ast RP); \]

property 2

Liveness of transition k8?

\[AG\ EF(MEK-PP_ERK); \]

property 3

Is it possible to produce ERK-PP neither creating nor using MEK-PP?

\[E(!MEK-PP \ U \ ERK-PP); \]

property 4

Is there cyclic behaviour w.r.t. the presence / absence of RKIP?

\[EG((RKIP \rightarrow EF(!RKIP)) \ast (!RKIP \rightarrow EF(RKIP))); \]
QUALITATIVE ANALYSIS RESULTS, SUMMARY

- structural decisions of behavioural properties -> static analysis
 - CPI -> BND
 - ES & DTP -> LIVE

- CPI & CTI
 - all minimal T-invariant / P-invariants enjoy biological interpretation
 - non-trivial T-invariant -> partial order description of the essential behaviour

- reachability graph -> dynamic analysis
 - finite -> BND
 - the only SCC contains all transitions -> LIVE
 - one Strongly Connected Component (SCC) -> REV

- model checking -> requires professional understanding
 - all expected properties are valid
QUALITATIVE ANALYSIS RESULTS, SUMMARY

- structural decisions of behavioural properties -> static analysis
 - CPI -> BND
 - ES & DTP -> LIVE

- CPI & CTI
 - all minimal T-invariant / P-invariants enjoy biological interpretation
 - non-trivial T-invariant -> partial order description of the essential behaviour

- reachability graph -> dynamic analysis
 - finite -> BND
 - the only SCC contains all transitions -> LIVE
 - one Strongly Connected Component (SCC) -> REV

- model checking -> requires professional understanding
 - all expected properties are valid

-> VALIDATED QUALITATIVE MODEL
BIONETWORKS, VALIDATION

- **validation criterion 1**
 - all expected structural properties hold
 - all expected general behavioural properties hold

- **validation criterion 2**
 - CTI
 - no minimal T-invariant without biological interpretation
 - no known biological behaviour without corresponding T-invariant

- **validation criterion 3**
 - CPI
 - no minimal P-invariant without biological interpretation (?)

- **validation criterion 4**
 - all expected special behavioural properties hold
 - temporal-logic properties -> TRUE
NOW WE ARE READY
FOR SOPHISTICATED
QUANTITATIVE ANALYSES!
quantitative model = qualitative model + quantitative parameters

-> known or estimated quantitative parameters
QUANTITATIVE ANALYSIS

- quantitative model = qualitative model + quantitative parameters
 -> known or estimated quantitative parameters

- typical quantitative parameters of bionetworks
 -> compound concentrations -> real numbers
 -> reaction rates / fluxes -> concentration-dependent
QUANTITATIVE ANALYSIS

- quantitative model = qualitative model + quantitative parameters
 -> known or estimated quantitative parameters

- typical quantitative parameters of bionetworks
 -> compound concentrations -> real numbers
 -> reaction rates / fluxes -> concentration-dependent

- continuous Petri nets

\[
\begin{align*}
\frac{dm_1}{dt} &= \frac{dm_2}{dt} = -v_1 \\
\frac{dm_3}{dt} &= v_1 - v_2 \\
v_1 &= k_1 m_1 m_2 \\
v_2 &= k_2 m_3
\end{align*}
\]

\{ ODEs \}
THE RKIP PATHWAY, CONTINUOUS PETRI NET

The diagram represents the RKIP pathway using a continuous Petri net model. The model includes states such as MEK-PP, ERK, RKIP, RKIP-P, and RKIP-P_RP, with transitions mediated by parameters k1 to k11. The pathway involves interactions such as RKIP-P_RKIP, Raf-1Star_RKIP, and MEK-PP_ERK. The diagram illustrates the flow of signaling molecules and regulatory interactions within the RKIP pathway.
\[
\frac{dm_3}{dt} =
\]
\[
\frac{dm_3}{dt} = + r_1 + r_4
\]
\[
\frac{dm_3}{dt} = + r_1 + r_4 - r_2 - r_3
\]
\[
\frac{dm_3}{dt} = + k_1 \cdot m_1 \cdot m_2 \\
+ r_4 \\
- r_2 \\
- r_3
\]
\[
\frac{dm_3}{dt} = + k_1 \cdot m_1 \cdot m_2 \\
+ k_4 \cdot m_4 \\
- k_2 \cdot m_3 \\
- k_3 \cdot m_3 \cdot m_9
\]
THE QUALITATIVE MODEL BECOMES THE STRUCTURED DESCRIPTION OF THE QUANTITATIVE MODEL!
QUANTITATIVE ANALYSIS

Species
Raf-1* 1 0 0 1 1 1 1 1 1 0 0 1 1 1
RKIP 1 0 0 0 0 0 0 1 0 0 1 0 0
Raf-1*_RKIP 0 1 0 0 0 0 0 0 1 1 0 0 0
Raf-1*_RKIP_ERK-PP 0 0 1 0 0 0 0 0 0 0 0 0 0
ERK 0 0 0 1 0 0 1 1 1 0 0 0 0
RKIP-P 0 0 0 1 1 0 0 0 0 0 0 0 1
MEK-PP 1 1 1 1 0 0 1 1 1 0 0 1 1
MEK-PP_ERK 0 0 0 0 1 1 0 0 0 1 1 0 0
ERK-PP 1 1 0 0 0 0 0 0 0 0 0 1 1
RP 1 1 1 1 1 0 0 1 1 1 1 0 1
RKIP-P_RP 0 0 0 0 1 1 0 0 0 0 0 1 0

Distribution of `bad' steady states as euclidean distances from the `good' final steady state

13 “good” state configurations the “bad” ones
QUANTITATIVE ANALYSIS
QUANTITATIVE ANALYSIS

ERK PP

Concentration (relative units)

Time (sec)

0 10 20 30 40 50 60 70 80 90 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

monika.heiner@informatik.tu-cottbus.de

July 2006
CASE STUDY, SUMMARY

❑ representation of bionetworks by Petri nets
 -> partial order representation -> better comprehension
 -> formal semantics -> sound analysis techniques
 -> unifying view

❑ purposes
 -> animation -> to experience the model
 -> model validation against consistency criteria -> to increase confidence
 -> qualitative / quantitative behaviour prediction -> new insights

❑ two-step model development
 -> qualitative model -> discrete Petri nets
 -> quantitative model -> continuous Petri nets = ODEs

❑ many challenging open questions
SOME MORE CASE STUDIES
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Reddy 1993]
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Reddy 1993]
Ex2 - Carbon Metabolism in Potato Tuber

[Koch; Junker; Heiner 2005]
Ex2 - Carbon Metabolism in Potato Tuber

[KOCH; JUNKER; HEINER 2005]
EX3: APOPTOSIS IN MAMMALIAN CELLS

[GON 2003]
EX4 - SWITCH CYCLE HALOBACTERIUM SALINARUM

[Marwan; Oesterhelt 1999]
WHAT HAVE
TECHNICAL AND NATURAL SYSTEMS
IN COMMON?
MODEL-BASED SYSTEM ANALYSIS

Problem system

model

system properties

model properties
MODEL-BASED SYSTEM ANALYSIS

CONSTRUCTION

technical system

verification

requirement specification

model properties

model

system

system properties
MODEL-BASED SYSTEM ANALYSIS

UNDERSTANDING

system

biological system

model

validation

behaviour prediction

system properties

known properties

unknown properties

model properties
OUTLOOK

THANKS!

HTTP://WWW-DSSZ.INFORMATIK.TU-COTTBUS.DE