Petri Nets for Systems and Synthetic Biology

Monika Heiner @tu-cottbus.de

joint work with David Gilbert, Robin Donaldson Bioinformatics Research Centre, University of Glasgow

Workshop on Computational Models for Cell Processes Turku, May 27, 2008

Biochemical Networks

• ... are networks of (bio-) chemical reactions

Biochemical Networks

• ... are networks of (bio-) chemical reactions

How to model this?

Biochemical Networks

• ... are networks of (bio-) chemical reactions

How to model this?

How to analyse this?

Biochemical Networks, Three Basic Properties

• bipartite - species & reactions : $r: 2H_2 + O_2 \rightarrow 2H_2O$

Biochemical Networks, Three Basic Properties

• bipartite - species & reactions : $r: 2H_2 + O_2 \rightarrow 2H_2O$

• reactions - sequential, alternative, concurrent

Biochemical Networks, Three Basic Properties

• bipartite - species & reactions : $r : 2H_2 + O_2 \rightarrow 2H_2O$

• reactions - sequential, alternative, concurrent

behaviour - stochastic

Qualitative

Stochastic

Continuous

Definition:

A place/transition Petri net is a quadruple

 $\mathcal{PN} = (P, T, f, m_0)$, where

• P, T - finite, non empty, disjoint sets (places, transitions)

Definition:

A place/transition Petri net is a quadruple

 $\mathcal{PN} = (P, T, f, m_0)$, where

- P, T finite, non empty, disjoint sets (places, transitions)
- $f: ((P \times T) \cup (T \times P)) \to \mathbb{N}_0$ (weighted directed arcs)

Definition:

A place/transition Petri net is a quadruple

 $\mathcal{PN} = (P, T, f, m_0)$, where

- P, T finite, non empty, disjoint sets (places, transitions)
- $f: ((P \times T) \cup (T \times P)) \to \mathbb{N}_0$ (weighted directed arcs)
- $m_0: P \to \mathbb{N}_0$ (initial marking)

Definition:

A place/transition Petri net is a quadruple $\mathcal{PN} = (P, T, f, m_0)$, where

- P, T finite, non empty, disjoint sets (places, transitions)
- $f: ((P \times T) \cup (T \times P)) \to \mathbb{N}_0$ (weighted directed arcs)
- $m_0: P \to \mathbb{N}_0$ (initial marking)

Interleaving Semantics: reachability graph / CTL, LTL

Definition:

A biochemically interpreted stochastic Petri net is a quintuple $SPN_{Bio} = (P, T, f, v, m_0)$, where

- P, T finite, non empty, disjoint sets (places, transitions)
- $f: ((P \times T) \cup (T \times P)) \to \mathbb{N}_0$ (weighted directed arcs)
- $m_0: P \to \mathbb{N}_0$ (initial marking)

Definition:

A biochemically interpreted stochastic Petri net is a quintuple $SPN_{Bio} = (P, T, f, v, m_0)$, where

- P, T finite, non empty, disjoint sets (places, transitions)
- $f: ((P \times T) \cup (T \times P)) \to \mathbb{N}_0$ (weighted directed arcs)
- $m_0: P \to \mathbb{N}_0$ (initial marking)
- $v: T \to H$ (stochastic firing rate functions) with
 - $H := \bigcup_{t \in T} \left\{ h_t \mid h_t : \mathbb{N}_0^{|\bullet t|} \to \mathbb{R}^+ \right\}$
 - $v(t) = h_t$ for all transitions $t \in T$

Definition:

A biochemically interpreted stochastic Petri net is a quintuple $SPN_{Bio} = (P, T, f, v, m_0)$, where

- P, T finite, non empty, disjoint sets (places, transitions)
- $f: ((P \times T) \cup (T \times P)) \to \mathbb{N}_0$ (weighted directed arcs)
- $m_0: P \to \mathbb{N}_0$ (initial marking)
- $v: T \to H$ (stochastic firing rate functions) with

$$-H:=\bigcup_{t\in T}\left\{h_t\,|\,h_t:\mathbb{N}_0^{|\bullet_t|}\to\mathbb{R}^+\right\}$$

- $v(t) = h_t$ for all transitions $t \in T$

Semantics: Continuous Time Markov Chain / CSL, PLTLc

Continuous Petri net

Definition:

A biochemically interpreted continuous Petri net is a quintuple $\mathcal{CPN}_{Bio} = (P, T, f, v, m_0)$, where

- P, T finite, non empty, disjoint sets (places, transitions)
- $f: ((P \times T) \cup (T \times P)) \rightarrow \mathbb{R}_0^+$ (weighted directed arcs)
- $m_0: P \to \mathbb{R}_0^+$ (initial marking)
- $v: T \rightarrow H$ (continuous firing rate functions) with
 - $H := \bigcup_{t \in T} \left\{ h_t \mid h_t : \mathbb{R}^{|\bullet t|} \to \mathbb{R}^+ \right\}$
 - $v(t) = h_t$ for all transitions $t \in T$

Continuous Petri net

Definition:

A biochemically interpreted continuous Petri net is a quintuple $\mathcal{CPN}_{Bio} = (P, T, f, v, m_0)$, where

- P, T finite, non empty, disjoint sets (places, transitions)
- $f: ((P \times T) \cup (T \times P)) \rightarrow \mathbb{R}_0^+$ (weighted directed arcs)
- $m_0: P \to \mathbb{R}_0^+$ (initial marking)
- $v: T \to H$ (continuous firing rate functions) with
 - $H := \bigcup_{t \in T} \left\{ h_t \mid h_t : \mathbb{R}^{|\bullet t|} \to \mathbb{R}^+ \right\}$
 - $v(t) = h_t$ for all transitions $t \in T$

Semantics: ODEs / LTLc

Discrete Petri nets

Interpretation of tokens:

- tokens = molecules, moles
- tokens = concentration levels

Specialised stochastic firing rate function, two examples :

• molecules semantics

$$h_t := \frac{c_t}{c_t} \cdot \prod_{p \in {}^{\bullet}t} \binom{m(p)}{f(p,t)} \tag{1}$$

• concentration levels semantics

$$h_t := \frac{\mathbf{k_t}}{N} \cdot N \cdot \prod_{p \in {}^{\bullet}t} \left(\frac{m(p)}{N}\right) \tag{2}$$

Running Case Study

• ... a typical signalling cascade

Running Case Study

• ... a typical signalling cascade

modelled in [Levchenko et al. 2000] like this ...

Running Case Study - Origin

[Levchenko et al. 2000], Supplemental Material: ODEs

```
dRaf/dt
                              k_2 * Raf RasGTP + k_6 * RafP Phase1 - k_1 * Raf * RasGTP
         dRasGTP/dt
                               k2 * Raf RasGTP + k3 * Raf RasGTP - k1 * Raf * RasGTP
   dRaf RasGTP/dt
                               k<sub>1</sub> * Raf * RasGTP - k<sub>2</sub> * Raf RasGTP - k<sub>3</sub> * Raf RasGTP
            dRafP/dt
                               k3 * Raf RasGTP + k12 * MEKP RafP + k9 * MEK RafP+
                               k<sub>5</sub> * RafP Phase1 + k<sub>8</sub> * MEK RafP + k<sub>11</sub> * MEKP RafP -
                               k_7 * RafP * MEK - k_{10} * MEKP * RafP - k_4 * Phase1 * RafP
                               k4 * Phase1 * RafP - k5 * RafP Phase1 - k6 * RafP Phase1
   dRafP Phase1/dt
                               \mathbf{k_7} * \mathbf{RafP} * \mathbf{MEK} - \mathbf{k_8} * \mathbf{MEK} \quad \mathbf{RafP} - \mathbf{k_9} * \mathbf{MEK} \quad \mathbf{RafP}
     dMEK RafP/dt
   dMEKP RafP/dt
                               k_{10} * MEKP * RafP - k_{11} * MEKP RafP - k_{12} * MEKP RafP
 dMEKP Phase2/dt
                               k<sub>16</sub> * Phase2 * MEKP - k<sub>18</sub> * MEKP Phase2 - k<sub>17</sub> * MEKP Phase2
dMEKPP Phase2/dt
                               k_{13} * MEKPP * Phase2 - k_{15} * MEKPP Phase2 - k_{14} * MEKPP Phase
            dERK/dt
                              k_{20} * ERK MEKPP + k_{30} * ERKP Phase3 - k_{19} * MEKPP * ERK
  derk mekpp/dt
                               k_{19} * MEKPP * ERK - k_{20} * ERK MEKPP - k_{21} * ERK MEKPP
dERKP MEKPP/dt
                               k<sub>22</sub> * MEKPP * ERKP - k<sub>24</sub> * ERKP MEKPP - k<sub>23</sub> * ERKP MEKPP
               etcetera
```

Running Case Study

• initial marking construction P-invariants

- initial marking construction
 - P-invariants
- subnetwork identification
 - P-invariants : token preserving modules (mass conservation)
 - T-invariants : state repeating modules (elementary modes)

- initial marking construction
 - P-invariants
- subnetwork identification
 - P-invariants: token preserving modules (mass conservation)
 - T-invariants : state repeating modules (elementary modes)
- general behavioural properties
 - boundedness: every place gets finite token number only
 - liveness: every transition may happen forever
 - reversibility: every state may be reached forever

- initial marking construction
 - P-invariants
- subnetwork identification
 - P-invariants : token preserving modules (mass conservation)
 - T-invariants : state repeating modules (elementary modes)
- general behavioural properties
 - boundedness: every place gets finite token number only
 - liveness: every transition may happen forever
 - reversibility: every state may be reached forever
- special behavioural properties
 - CTL / LTL model checking

Running Case Study - P-invariants

Running Case Study - P-invariants

Running Case Study - P-invariants

Running Case Study - initial marking

Running Case Study - general properties

• state space

levels	reachability graph	IDD data structure
	number of states	number of nodes
1	118	52
4	$2.4 \cdot 10^4$	115
8	$6.1\cdot 10^6$	269
80	$5.6 \cdot 10^{18}$	13,472
120	$1.7 \cdot 10^{21}$	29,347

Running Case Study - general properties

• state space

levels	reachability graph	IDD data structure
	number of states	number of nodes
1	118	52
4	$2.4 \cdot 10^4$	115
8	$6.1\cdot 10^6$	269
80	$5.6 \cdot 10^{18}$	13,472
120	$1.7 \cdot 10^{21}$	29,347

- Covered by P-invariants (CPI) ⇒ bounded
- Deadlock-Trap Property (DTP) holds ⇒ no dead states

Running Case Study - general properties

• state space

levels	reachability graph	IDD data structure
	number of states	number of nodes
1	118	52
4	$2.4 \cdot 10^4$	115
8	$6.1\cdot 10^6$	269
80	$5.6 \cdot 10^{18}$	13,472
120	$1.7 \cdot 10^{21}$	29,347

- Covered by P-invariants (CPI) ⇒ bounded
- Deadlock-Trap Property (DTP) holds ⇒ no dead states
- reachability graph
 - strongly connected ⇒ reversible
 - contains every transition (reaction) ⇒ live

Running Case Study - T-invariants

Running Case Study - partial order run of I/O T-invariant

Running Case Study - partial order run of I/O T-invariant

Qualitative Model Checking (CTL)

property Q1:

The signal sequence predicted by the partial order run of the I/O T-invariant is the only possible one; i.e., starting at the initial state, it is necessary to pass through RafP, MEKP, MEKPP and ERKP in order to reach ERKPP.

```
¬ [ E ( ¬ RafP U MEKP ) ∨
E ( ¬ MEKP U MEKPP ) ∨
E ( ¬ MEKPP U ERKP ) ∨
E ( ¬ ERKP U ERKPP ) ]
```

Stochastic Model Checking - Preparation

- isomorphy of reachability graph and CTMC, thus all qualitative properties still valid
- How many levels needed for quantitative evaluation?
 - state space(1 levels) = 118 (Boolean interpretation)
 - state space(4 levels) = 24,065
 - state space(8 levels) = 6,110,643
- equivalence check

$$C_{RafP}(t) = \frac{0.1}{s} \cdot \underbrace{\sum_{i=1}^{4s} (i \cdot P(L_{RafP}(t) = i))}_{expected \ value \ of \ L_{RafP}(t)}$$

Stochastic Model Checking - Preparation

• equivalence check, results, e.g. for MEK:

Stochastic Model Checking - Preparation

• equivalence check, results, e.g. for RasGTP :

Stochastic Model Checking (CSL)

property \$1:

What is the probability of the concentration of RafP increasing, when starting in a state where the level is already at L?

$$P_{=?} \; [\; (\; \mathsf{RafP} \; = \; \mathsf{L} \;) \; \mathsf{U}^{<=100} \; (\; \mathsf{RafP} > \mathsf{L} \;) \{\; \mathsf{RafP} = \mathsf{L} \;\} \;]$$

Stochastic Model Checking (CSL)

property S2:

What is the probability that RafP is the first species to react?

$$\begin{array}{l} {\sf P}_{=?} \left[\, \left(\, \left(\, {\sf MEKPP} \, = \, 0 \, \right) \, \wedge \, \left(\, {\sf ERKPP} \, = \, 0 \, \right) \, \right) \, {\sf U}^{<=100} \left(\, {\sf RafP} \, > \, L \, \right) \\ \left\{ \, \left(\, {\sf MEKPP} \, = \, 0 \, \right) \, \, \wedge \, \left(\, {\sf ERKPP} \, = \, 0 \, \right) \, \, \wedge \, \left(\, {\sf RafP} \, = \, 0 \, \right) \, \right\} \, \, \right] \end{array}$$

Continuous Model Checking - Preparation

• steady state analysis, results for all 118 'good' states, e.g. for MEK:

Continuous Model Checking - Preparation

• steady state analysis for state 1:

Continuous Model Checking - Preparation

• steady state analysis for state 10 :

Continuous Model Checking (LTLc)

property C1:

The concentration of RafP rises to a significant level, while the concentrations of MEKPP and ERKPP remain close to zero; i.e. RafP is really the first species to react.

((MEKPP
$$<$$
 0.001) \land (ERKPP $<$ 0.0002)) \textbf{U} (RafP $>$ 0.06)

Framework

- model construction, animation, simulation
 - Snoopy (Cottbus)

- model construction, animation, simulation
 - Snoopy (Cottbus)
- qualitative analysis
 - Charlie (Cottbus), INA
 - BDD-CTL model checker (Boolean semantics) (Cottbus)
 - IDD-CTL model checker (integer semantics) (Cottbus)

- model construction, animation, simulation
 - Snoopy (Cottbus)
- qualitative analysis
 - Charlie (Cottbus), INA
 - BDD-CTL model checker (Boolean semantics) (Cottbus)
 - IDD-CTL model checker (integer semantics) (Cottbus)
- stochastic analysis
 - analytical model checking: PRISM/CSL
 - simulative model checking : MC2(PLTLc) (Glasgow)

- model construction, animation, simulation
 - Snoopy (Cottbus)
- qualitative analysis
 - Charlie (Cottbus), INA
 - BDD-CTL model checker (Boolean semantics) (Cottbus)
 - IDD-CTL model checker (integer semantics) (Cottbus)
- stochastic analysis
 - analytical model checking: PRISM/CSL
 - simulative model checking : MC2(PLTLc) (Glasgow)
- continuous analysis
 - MATLAB
 - BioNessie (Glasgow)
 - LTLc model checking: MC2(PLTLc) (Glasgow), BioCham

 unifying framework qualitative & stochastic & continuous paradigms

- unifying framework qualitative & stochastic & continuous paradigms
- three models sharing structure
 - qualitative Petri nets → time-free analyses
 - stochastic Petri nets → CTMC
 - continuous Petri nets → ODEs

- unifying framework qualitative & stochastic & continuous paradigms
- three models sharing structure
 - qualitative Petri nets → time-free analyses
 - stochastic Petri nets → CTMC
 - continuous Petri nets → ODEs
- running case study
 ERK signalling pathway

- unifying framework qualitative & stochastic & continuous paradigms
- three models sharing structure
 - qualitative Petri nets → time-free analyses
 - stochastic Petri nets → CTMC
 - continuous Petri nets → ODEs
- running case study
 ERK signalling pathway
- focus transient analysis, esp. by
 - transition invariants & partial order run
 - qualitative & stochastic & continuous model checking

- unifying framework qualitative & stochastic & continuous paradigms
- three models sharing structure
 - qualitative Petri nets → time-free analyses
 - stochastic Petri nets → CTMC
 - continuous Petri nets → ODEs
- running case study
 ERK signalling pathway
- focus transient analysis, esp. by
 - transition invariants & partial order run
 - qualitative & stochastic & continuous model checking
- not bound to the Petri net perspective

increasing level number = increasing accuracy
 BUT, monotonous liveness holds for substructures (EFC) only!

- increasing level number = increasing accuracy
 BUT, monotonous liveness holds for substructures (EFC) only!
- unbounded qualitative model + time = bounded model BUT, that's not always the case!
 (structural) criteria for time-dependent boundedness?

- increasing level number = increasing accuracy
 BUT, monotonous liveness holds for substructures (EFC) only!
- unbounded qualitative model + time = bounded model BUT, that's not always the case! (structural) criteria for time-dependent boundedness?
- continuous behaviour = averaged stochastic behaviour
 BUT, that's not always the case!
 stochastic and continuous behaviour may differ; why? when?

- increasing level number = increasing accuracy
 BUT, monotonous liveness holds for substructures (EFC) only!
- unbounded qualitative model + time = bounded model BUT, that's not always the case! (structural) criteria for time-dependent boundedness?
- continuous behaviour = averaged stochastic behaviour
 BUT, that's not always the case!
 stochastic and continuous behaviour may differ; why? when?
- sharing structure = sharing properties
 BUT, to which extend?
 relation: qualitative properties & continuous behaviour?

Thanks!

- all data files and analysis results available at www-dssz.informatik.tu-cottbus.de/examples/levchenko
- M Heiner, D Gilbert, R Donaldson:
 Petri Nets for Systems and Synthetic Biology;
 SFM 2008, Springer LNCS 5016, pp. 215-264, 2008.
- laptop demonstration available

