A colored Petri nets-based framework for modeling and simulating biological systems

Fei Liu, Monika Heiner

Department of Computer Science Brandenburg University of Technology Cottbus

> IB-PAS, Bielefeld May 17, 2010

Outline

- Motivation
- Colored Petri nets-based framework
- Functionalities and features
- Example

Fei Liu (BTU) May 17 2010 2 / 24

Motivation

Fei Liu (BTU) May 17 2010 3 / 24

Low-level Petri nets

- Low-level Petri nets do not scale,
- Mainly restricted to relatively small models,
- Difficult to manage and understand large-scale nets,
- Increasing risk of modeling errors for large-scale nets.

Fei Liu (BTU) May 17 2010 4 / 24

Colored Petri nets

- Compact and readable representation,
- Increasing net size = increasing color sets,
- Analysis techniques of low-level Petri nets by automatic unfolding,
- Analysis techniques of high-level Petri nets.

Fei Liu (BTU) May 17 2010 5 / 24

Colored Petri nets-based framework

Fei Liu (BTU) May 17 2010 6 / 24

Colored Petri nets-based framework

Fei Liu (BTU) May 17 2010 7 / 24

Colored qualitative Petri net (QPN^C)

- A colored extension of extended P/T net,
 e.g., inhibitor arc and read arc,
- Predefined data types for color set definition:
 - ▶ Basic types: integer, string, Boolean, enumeration, index,
 - Structured types: product, union.

Fei Liu (BTU) May 17 2010 8 / 24

An example: Cooperative binding of oxygen to hemoglobin

Fei Liu (BTU)

An example: Cooperative binding of oxygen to hemoglobin

10 / 24

Fei Liu (BTU) May 17 2010

An example: Cooperative binding of oxygen to hemoglobin

Fei Liu (BTU)

Declarations for the QPN^C models of the cooperative ligand binding

```
Declarations
colorset Dot = dot:
colorset HbO2 = int with 0-4:
colorset Level = enum with H,L;
colorset P = \text{product with HbO2} \times \text{Level};
variable x: HbO2:
variable y: Level;
```

12 / 24

Fei Liu (BTU) May 17 2010

Colored stochastic Petri net (SPN^C)

- A colored extension of biochemically interpreted extended stochastic Petri nets,
- Many features helpful for modeling biological systems,
 e.g., initial marking definition, rate function definition.

13 / 24

Fei Liu (BTU) May 17 2010

Functionalities and features

Fei Liu (BTU) May 17 2010 14 / 24

Functionalities

- Colored Petri net models as drawn as usual, and checking the syntax of declarations and expressions automatically.
- Automatic animation, and single-step animation by manually choosing a binding.
- Simulation is done on an automatically unfolded Petri net.
- Simulation results for colored or uncolored places/transitions are given together or separately.
- Several simulation algorithms to simulate SPN^C, including the Gilespie stochastic simulation algorithm (SSA).
- QPN^C and SPN^C are exported to different net formalisms.

Features for modeling biological systems

- Concise specification of initial markings,
- Specifying a rate function for each instance of a colored transition,
- Supporting several special arc types:
 - inhibitor arc,
 - read arc,
 - reset arc,
 - modifier arc,
- Supporting extended rate functions:
 - stochastic transitions with freestyle rate functions
 - immediate firing,
 - deterministic firing delay,
 - scheduled firing.

◆ロト ◆問 > ◆ き > ◆ き > り へ で

Fei Liu (BTU)

Specification of initial markings

- Specifying colors and their corresponding tokens as usual,
- Specifying a set of colors with the same number of tokens,
- Using a predicate to choose a set of colors and then specifying a same number of tokens,
- Using the *all*() function to specify all colors with a specified number of tokens.

Color/Predicate/Function	marking
all()	2
1	2
4,5,7	2
x > 10	2

Colorset CS = int with 1-100;

Supporting special arc types

Fei Liu (BTU) May 17 2010 18 / 24

Specifying a rate function for each instance of a colored transition

Fei Liu (BTU) May 17 2010 19 / 24

Example

Fei Liu (BTU) May 17 2010 20 / 24

Stochastic Petri net model for the repressilator

4 L F 4 B F 4 E F 4 E F E *) U.C*

Fei Liu (BTU) May 17 2010 21 / 24

Colored stochastic Petri net model for the repressilator

Transition	Rate function
generate	0.1 * <i>gene</i>
block	1.0*proteine
unblock	0.0001*blocked
degrade	0.001 * proteine

Fei Liu (BTU) May 17 2010 22 / 24

Colored stochastic Petri net model for the repressilator

Increasing net size = increasing color set.

4日 → 4団 → 4 三 → 4 三 → 9 Q @

23 / 24

Fei Liu (BTU) May 17 2010

Thank You!

Begin to demonstrate QPN^C/SPN^C

Fei Liu (BTU) May 17 2010 24 / 24