BIOCHEMICAL NETWORKS
- A PETRI NET PERSPECTIVE -

Monika Heiner
Brandenburg University of Technology
Cottbus
Dept. of CS

monika.heiner@informatik.tu-cottbus.de
MODEL-BASED SYSTEM ANALYSIS
MODEL-BASED SYSTEM ANALYSIS
MODEL-BASED SYSTEM ANALYSIS
MODEL-BASED SYSTEM ANALYSIS

UNDERSTANDING

system

biological system

model

model properties

system properties

validation

behaviour prediction

known properties

unknown properties
WHAT KIND OF MODEL SHOULD BE USED?
<**NETWORK REPRESENTATIONS, Ex1**>

If you have any questions or need further assistance, feel free to ask. monika.heiner@informatik.tu-cottbus.de
August 2010

- FORMAL SEMANTICS?
Network Representations, Ex2

\[
\begin{align*}
\frac{d\alpha}{dt} & = -v_1 \\
\frac{d\text{Ste2}}{dt} & = -v_2 + v_3 - v_5 \\
\frac{d\text{Ste2}_{active}}{dt} & = v_2 - v_3 - v_4 \\
\frac{d\text{Sst2}_{active}}{dt} & = v_46 - v_47 \\
\frac{dG\alpha\beta\gamma}{dt} & = -v_6 + v_9 \\
\frac{dG\alpha\text{GTP}}{dt} & = v_6 - v_7 - v_8 \\
\frac{dG\alpha\text{GDP}}{dt} & = v_7 + v_8 - v_9 \\
\frac{dG\beta\gamma}{dt} & = v_6 - v_9 - v_{10} + v_{11} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\
& \quad - v_{42} + v_{43} \\
\frac{d\text{Ste5}}{dt} & = -v_{12} + v_{13} + v_{17} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\
\frac{d\text{Ste7}}{dt} & = -v_{14} + v_{15} + v_{17} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\
\frac{d\text{Fus3}}{dt} & = -v_{14} + v_{15} + v_{17} + v_{21} + v_{23} + v_{25} + v_{27} - v_{29} \\
& \quad + v_{30} + v_{33} \\
\frac{d\text{Ste20}}{dt} & = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\
\end{align*}
\]

\[
\begin{align*}
v_1 & = \alpha[t] \cdot \text{Bar1}_{active}[t] \cdot k_1 \\
v_2 & = \text{Ste2}[t] \cdot \alpha[t] \cdot k_2 \\
v_3 & = \text{Ste2}_{active}[t] \cdot k_3 \\
v_4 & = \text{Ste2}_{active}[t] \cdot k_4 \\
v_5 & = \text{Ste2}[t] \cdot k_5 \\
v_6 & = \text{Ste2}_{active}[t] \cdot G\alpha\beta\gamma[t] \cdot k_6 \\
v_7 & = G\alpha\text{GTP}[t] \cdot k_7 \\
v_8 & = G\alpha\text{GTP}[t] \cdot \text{Sst2}_{active}[t] \cdot k_8 \\
v_9 & = G\alpha\text{GDP}[t] \cdot G\beta\gamma[t] \cdot k_9 \\
v_{10} & = G\beta\gamma[t] \cdot C[t] \cdot k_{10} \\
v_{11} & = D[t] \cdot k_{11} \\
v_{12} & = \text{Ste5}[t] \cdot \text{Ste11}[t] \cdot k_{12} \\
v_{13} & = A[t] \cdot k_{13} \\
v_{14} & = \text{Ste7}[t] \cdot \text{Fus3}[t] \cdot k_{14} \\
v_{15} & = B[t] \cdot k_{15} \\
v_{16} & = A[t] \cdot B[t] \cdot k_{16} \\
v_{17} & = C[t] \cdot k_{17} \\
v_{18} & = D[t] \cdot \text{Ste20}[t] \cdot k_{18}
\end{align*}
\]
\[
\begin{align*}
\frac{dV_1}{dt} & = v_1 - d \cdot V_1 \\
\frac{dV_2}{dt} & = v_2 + v_3 - v_4 \\
\frac{dV_3}{dt} & = v_5 + v_6 - v_7 - v_8 \\
\frac{dV_4}{dt} & = v_9 - v_10 \\
\frac{dV_5}{dt} & = v_11 - v_12 \\
\frac{dV_6}{dt} & = v_13 - v_14 \\
\frac{dV_7}{dt} & = v_15 - v_16 \\
\frac{dV_8}{dt} & = v_17 - v_18
\end{align*}
\]
Bio Networks, some Problems

- **knowledge**
 - uncertain
 - growing, changing
 - distributed over independent data bases, papers, journals, . . .

- **various, mostly ambiguous representations**
 - verbose descriptions
 - diverse graphical representations
 - contradictory and / or fuzzy statements

- **network structure**
 - tends to grow fast
 - dense, apparently unstructured
 - hard to read

%"#&'()*+,-./0123456789:;<=?>@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
Bio Networks, Some Problems

- **knowledge**
 - uncertain
 - growing, changing
 - distributed over independent data bases, papers, journals, . . .

- **various, mostly ambiguous representations**
 - verbose descriptions
 - diverse graphical representations
 - contradictory and / or fuzzy statements

- **network structure**
 - tends to grow fast
 - dense, apparently unstructured
 - hard to read

-> **MODELS ARE FULL OF ASSUMPTIONS <**
FRAMEWORK: SYSTEMS BIOLOGY

MODELLING = FORMAL KNOWLEDGE REPRESENTATION

natural biosystem

wetlab experiments

observed behaviour

formalizing understanding

predicted behaviour

model

model-based experiment design

wetlab experiments
MODELLING = FORMAL KNOWLEDGE REPRESENTATION

natural biosystem

wetlab experiments

observed behaviour

predicted behaviour

model

formalizing understanding

model-based experiment design

wetlab experiments

model validation

MODEL VALIDATION = CONFIDENCE INCREASE
Bio Network Representations Should Be

- **Readable**
 - fault avoidance
 - informal = cartoon-like representations?

- **Analysable**
 - formal = mathematical representations

- **Executable**
 - to experience the model

- **Unifying Power**
 - high-level description for various analysis approaches
bionetworks knowledge

quantitative modelling

quantitative models

animation / analysis / simulation

understanding
model validation
quantitative behaviour prediction

ODEs
FRAMEWORK

QPN

SPN

CPN
FRAMEWORK

PN & Systems Biology

QPN

abstraction

extension

time-free

timed, quantitative

SPN

discrete state space

CPN

continuous state space

monika.heiner@informatik.tu-cottbus.de

August 2010
FRAMEWORK

PN & Systems Biology

QPN

time-free

timed, quantitative

abstraction

extension

approximation

SPN

discrete state space

CPN

continuous state space

monika.heiner@informatik.tu-cottbus.de

August 2010
 FRAMEWORK

PN & Systems Biology

FRAMEWORK

RG

CTL, LTL

QPN

time-free

abstracted, quantitative

SPN

CTMC

CSL, PLTLc

CPN

ODEs

PLTLc

discrete state space

continuous state space

monika.heiner@informatik.tu-cottbus.de

August 2010
THREE MODELS SHARING STRUCTURE

QUANTITATIVE MODEL = QUALITATIVE MODEL + QUANTITATIVE PARAMETERS (KINETICS)
QUALITATIVE PETRI NETS - QPN -
. . . ARE

NETWORKS OF

(BIO-) CHEMICAL REACTIONS
\[2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O} \]
2 H₂ + O₂ -> 2 H₂O
2 \(\text{H}_2 \) + \(\text{O}_2 \) \(\rightarrow \) 2 \(\text{H}_2\text{O} \)

Diagram:

- **Hyper arcs**: Arrows indicating connections between places and transitions.
- **Places**: Symbols representing \(\text{H}_2 \), \(\text{O}_2 \), and \(\text{H}_2\text{O} \).
- **Transitions**: Process steps indicated by arrows and numbers.
atomic actions \rightarrow Petri net transitions \rightarrow chemical reactions

$$2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O}$$
PETRI NETS, BASICS - THE STRUCTURE

- atomic actions -> Petri net transitions -> chemical reactions

 \[2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O}\]

- local conditions -> Petri net places -> chemical compounds
Petri Nets, Basics - The Structure

- **atomic actions** -> **Petri net transitions** -> **chemical reactions**

 \[
 2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O}
 \]

- **local conditions** -> **Petri net places** -> **chemical compounds**

- **multiplicities** -> **Petri net arc weights** -> **stoichiometric relations**

monika.heiner@informatik.tu-cottbus.de
August 2010
PETRI NETS, BASICS - THE STRUCTURE

- atomic actions -> Petri net transitions -> chemical reactions

 \[2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O} \]

- local conditions -> Petri net places -> chemical compounds

- multiplicities -> Petri net arc weights -> stoichiometric relations

- condition’s state -> token(s) in its place -> available amount (e.g. mol)

- system state -> marking -> compounds distribution
PETRI NETS, BASICS - THE STRUCTURE

- atomic actions \rightarrow Petri net transitions \rightarrow chemical reactions

 $2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O}$

- local conditions \rightarrow Petri net places \rightarrow chemical compounds

- multiplicities \rightarrow Petri net arc weights \rightarrow stoichiometric relations

- condition’s state \rightarrow token(s) in its place \rightarrow available amount (e.g. mol)

- system state \rightarrow marking \rightarrow compounds distribution

$\text{PN} = (P, T, F, m_0), \quad F: (P \times T) \cup (T \times P) \rightarrow N_0, \quad m_0: P \rightarrow N_0$
Petri Nets, Basics - the Firing Rule

- an action may happen, if
 - all preconditions are fulfilled
 (corresponding to the arc weights);

- if an action happens, then
 - tokens are removed from all preconditions
 (corresponding to the arc weights), and
 - tokens are added to all postconditions
 (corresponding to the arc weights);

- action happens (firing of a transition)
 - atomic
 - time-less

-> prerequisite

-> firing behaviour

-> model assumptions
atomic actions -> Petri net transitions -> chemical reactions

$$2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O}$$

input compounds

output compounds
atomic actions -> Petri net transitions -> chemical reactions

\[2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O} \]

Input compounds

\[\text{H}_2 \quad (4) \rightarrow 2 \quad \text{r} \rightarrow 2 \quad \text{H}_2\text{O} \]

\[\text{O}_2 \quad \rightarrow \quad \text{r} \rightarrow 2 \quad \text{H}_2\text{O} \]

Output compounds

FIRING
PETRI NETS, BASICS - THE BEHAVIOUR

- **atomic actions** \rightarrow **Petri net transitions** \rightarrow **chemical reactions**

\[2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O} \]

```
input compounds

H_2 (4) \rightarrow 2 \rightarrow r \rightarrow 2 \rightarrow \text{H}_2\text{O}

O_2 \rightarrow r \rightarrow \text{H}_2\text{O}

output compounds

FIRING

TOKEN GAME

DYNAMIC BEHAVIOUR (substance/signal flow)

STATE SPACE
```
Typical Basic Structures

- **metabolic networks**
 -> *substance flows*

- **signal transduction networks**
 -> *signal flows*
petri net elements, interpretations

- metabolic networks
 - signal transduction networks
 - gene regulatory networks

- transitions
 - (reversible, stoichiometric, enzyme-catalyzed) chemical reactions,
 - conversions/transport of metabolites, proteins, . . .
 - complexations/decomplexations, de-/phosphorylations, . . .

- places
 - (primary, secondary) chemical compounds,
 - (various states of) proteins, protein complex, genes, . . .

- tokens
 - molecules, moles, . . .
 - concentration levels, gene expression levels, . . .
 e.g., high/low = present/not present, or any finite integer number
Level Concept

![Diagram showing levels of concentration](image)

- Level 1
 - Level 1
 - Level 2
 - Level 3
 - Level 4
- Level 2
 - Level 2
 - Level 3
 - Level 4
 - Level 7
- Level 3
 - Level 3
 - Level 4
 - Level 6
 - Level 8
- Level 4
 - Level 4
 - Level 5
 - Level 6
 - Level 8

Concentration

- 0.0
- 0.1
- 0.2
- 0.3
- 0.4

4 Level Version

8 Level Version
BIO PETRI NETS - SOME EXAMPLES
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Reddy 1993]
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Reddy 1993]
[Heiner 1998]
Ex2: Apoptosis in Mammalian Cells

![Diagram of the apoptotic process in mammalian cells.](image_url)

[**GON 2003**]
Ex2: APOPTOSIS IN MAMMALIAN CELLS

[QON 2003]

[HEINER, KOCH, WILL 2004]
Ex3 - Carbon Metabolism in Potato Tuber

[Koch, Junker, Heiner 2005]
Ex3 - Carbon Metabolism in Potato Tuber

[Koch, Junker, Heiner 2005]
positive feedback

[**GILBERT, HEINER, ROSSER, FULTON, GU, TRYBILIO 2008**]
Ex4 - Biosensor

[Gilbert, Heiner, Rosser, Fulton, Gu, Trybiolo 2008]
RasGTP

Raf → RafP

Phosphatase1

MEK → MEKP → MEKPP

Phosphatase2

ERK → ERKP → ERKPP

Phosphatase3
Ex6 - HYPOXIA

[YU ET AL. 2007]
Ex6 - HYPOXIA

[Heiner, Sriram 2010]
Ex6 - HYPOXIA

[HEINER, SRIRAM 2010]
Ex6 - HYPOXIA

[HEINER, SRIRAM 2010]
Ex7 - Switch Cycle Halobacterium Salinarum

[Marwan, Oesterhelt 1999]
Ex7 - Switch Cycle Halobacterium Salinarum

PN & Systems Biology
QUALITATIVE ANALYSES
Typical Petri Net Questions

- How many tokens can reside at most in a given place?
 - $\Rightarrow (0, 1, k, \infty) \Rightarrow \text{BOUNDEDNESS}$
Typical Petri Net Questions

- How many tokens can reside at most in a given place?
 -> \((0, 1, k, \infty)\) -> BOUNDEDNESS

- How often can a transition fire?
 -> \((0\text{-times, n-times, oo-times})\) -> LIVENESS
Typical Petri Net Questions

- How many tokens can reside at most in a given place?
 - \((0, 1, k, \infty) \) -> **Boundedness**

- How often can a transition fire?
 - \((0\text{-times}, n\text{-times}, oo\text{-times}) \) -> **Liveness**

- How often can a system state be reached?
 - **never** -> **Unreachable** -> **Safety Properties**
 - **n-times** -> **Reproducible**
 - **oo-times** -> **Reversibility**
TYPICAL PETRI NET QUESTIONS

- **How many tokens can reside at most in a given place?**
 - \((0, 1, k, \infty) \)
 - **BOUNDENESS**

- **How often can a transition fire?**
 - \((0\text{-times}, n\text{-times}, oo\text{-times}) \)
 - **LIVENESS**

- **How often can a system state be reached?**
 - never
 - \(n\text{-times} \)
 - \(oo\text{-times} \)
 - **UNREACHABLE → SAFETY PROPERTIES**
 - **REPRODUCIBLE**
 - **REVERSIBILITY**

- **Are there behaviourally invariant net structures?**
 - **token conservation**
 - \(P \text{- INVARIANTS} \)
 - **token distribution reproduction**
 - \(T \text{- INVARIANTS} \)
Typical Petri Net Questions

- **How many tokens can reside at most in a given place?**
 -> \((0, 1, k, \infty)\) -> **BOUND EDNESS**

- **How often can a transition fire?**
 -> \((0\text{-times}, n\text{-times}, oo\text{-times})\) -> **LIVENESS**

- **How often can a system state be reached?**
 -> never -> **UNREACHABLE** -> **SAFETY PROPERTIES**
 -> \(n\text{-times}\) -> **REPRODUCIBLE**
 -> \(oo\text{-times}\) -> **REVERSIBILITY**

- **Are there behaviourally invariant net structures?**
 -> **token conservation** -> **P - INVARIANT S**
 -> **token distribution reproduction** -> **T - INVARIANTS**

- **... and many more -> temporal logics** -> **CTL / LTL - CSL / PLTL**
Typical Petri Net Questions

- **How many tokens can reside at most in a given place?**
 - \((0, 1, k, \infty) \)
 - \(\text{BOUNDENESS} \)

- **How often can a transition fire?**
 - \((0\text{-times, } n\text{-times, } \infty\text{-times}) \)
 - \(\text{LIVENESS} \)

- **How often can a system state be reached?**
 - \(\text{never} \)
 - \(\text{UNREACHABLE} \)
 - \(\text{REPRODUCIBLE} \)
 - \(\text{oo\text{-times}} \)
 - \(\text{REVERSIBILITY} \)

- **Are there behaviourally invariant net structures?**
 - \(\text{token conservation} \)
 - \(\text{P - INVARIANTS} \)
 - \(\text{token distribution reproduction} \)
 - \(\text{T - INVARIANTS} \)

- **... and many more**
 - \(\text{temporal logics} \)
 - \(\text{CTL / LTL - CSL / PLTL} \)

monika.heiner@informatik.tu-cottbus.de

August 2010
ANALYSIS TECHNIQUES

- **static analyses** -> no state space construction

- **dynamic analyses** -> total/ partial state space construction
ANALYSIS TECHNIQUES

- **static analyses**
 - no state space construction
 - structural properties (graph theory, combinatorics), e.g. DTP
 - P / T - invariants (linear algebra)

- **dynamic analyses**
 - total/ partial state space construction
ANALYSIS TECHNIQUES

- static analyses
 -> no state space construction
 -> structural properties (graph theory)
 -> P / T - invariants (linear algebra)

- dynamic analyses
 -> total/ partial state space construction
 -> analysis of general behavioural system properties,
 e.g. boundedness, liveness, reversibility, . . .

 -> model checking of special behavioural system properties,
 e.g. reachability of a given (sub-) system state (with constraints),
 reproducability of a given (sub-) system state (with constraints)

 expressed in temporal logics (CTL / LTL),
 -> very flexible, powerful query language
A CASE STUDY
...one pathway...

Mitogens
Growth factors

receptor

Ras

Raf

MEK

ERK

cytoplasmic substrates

Elk

SAP

Gene
THE RKIP PATHWAY

[Cho et al., CMSB 2003]
THE RKIP PATHWAY

[Cho et al., CMSB 2003]
THE RKIP PATHWAY, PETRI NET

PN & Systems Biology
THE RKIP PATHWAY, HIERARCHICAL PETRI NET
THE RKIP PATHWAY, HIERARCHICAL PETRI NET

initial marking
initial marking
THE RKIP PATHWAY, P-INVARIANTS

P-INV1: MEK
P-INV2: RAF-1STAR
P-INV3: RP
P-INV4: ERK
P-INV5: RKIP
CONSTRUCTION OF THE INITIAL MARKING

- each P-invariant gets at least one token
 -> P-invariants are structural deadlocks and traps

- in signal transduction
 -> exactly 1 token, corresponding to species conservation
 -> token in least active state

- all (non-trivial) T-invariants get realizable
 -> to make the net live

- minimal marking
 -> minimization of the state space
CONSTRUCTION OF THE INITIAL MARKING

- each P-invariant gets at least one token
 -> P-invariants are structural deadlocks and traps

- in signal transduction
 -> exactly 1 token, corresponding to species conservation
 -> token in least active state

- all (non-trivial) T-invariants get realizable
 -> to make the net live

- minimal marking
 -> minimization of the state space

 -> UNIQUE INITIAL MARKING
NON-TRIVIAL T-INARIANT, RUN

- realizability check under the constructed marking

- T-invariant’s unfolding to describe its behaviour
 -> partial order structure

- labelled condition / event net
 -> events (boxes)
 - transition occurrences
 -> conditions (circles)
 - involved compounds

- occurrence net
 -> acyclic
 -> no backward branching conditions
 -> infinite
property 1

Is a given (sub-) marking (system state) reachable?

\[EF (\text{ERK} \ast \text{RP}); \]

property 2

Liveness of transition k8?

\[AG EF (\text{MEK-PP_ERK}); \]

property 3

Is it possible to produce ERK-PP neither creating nor using MEK-PP?

\[E (\neg \text{MEK-PP} \ U \text{ERK-PP}); \]

property 4

Is there cyclic behaviour w.r.t. the presence / absence of RKIP?

\[EG ((\text{RKIP} \rightarrow EF (\neg \text{RKIP})) \ast (\neg \text{RKIP} \rightarrow EF (\text{RKIP}))); \]
QUALITATIVE ANALYSIS RESULTS, SUMMARY

☐ structural decisions of behavioural properties
 -> CPI -> BND
 -> ES & DTP -> LIVE

☐ CPI & CTI
 -> all minimal T-invariant / P-invariants enjoy biological interpretation
 -> non-trivial T-invariant -> partial order description of the essential behaviour

☐ reachability graph
 -> finite -> BND
 -> the only SCC contains all transitions -> LIVE
 -> one Strongly Connected Component (SCC) -> REV

☐ model checking
 -> requires professional understanding
 -> all expected properties are valid
QUALITATIVE ANALYSIS RESULTS, SUMMARY

- structural decisions of behavioural properties
 - CPI -> BND
 - ES & DTP -> LIVE

- CPI & CTI
 - all minimal T-invariant / P-invariants enjoy biological interpretation
 - non-trivial T-invariant -> partial order description of the essential behaviour

- reachability graph
 - finite -> BND
 - the only SCC contains all transitions -> LIVE
 - one Strongly Connected Component (SCC) -> REV

- model checking
 - all expected properties are valid

-> VALIDATED QUALITATIVE MODEL
BIONETWORKS, VALIDATION

- **validation criterion 1**
 - \(\text{all expected structural properties hold} \)
 - \(\text{all expected general behavioural properties hold} \)

- **validation criterion 2**
 - \(\text{CTI} \)
 - \(\text{no minimal T-invariant without biological interpretation} \)
 - \(\text{no known biological behaviour without corresponding T-invariant} \)

- **validation criterion 3**
 - \(\text{CPI} \)
 - \(\text{no minimal P-invariant without biological interpretation (?)} \)

- **validation criterion 4**
 - \(\text{all expected special behavioural properties hold} \)
 - \(\text{temporal-logic properties} \) \(\text{TRUE} \)
NOW WE ARE READY FOR SOPHISTICATED QUANTITATIVE ANALYSES!
STOCHASTIC
PETRI NETS
- SPN (xSPN) -
STOCHASTIC PETRI NETS, BASICS

- transitions get a stochastic waiting time
 -> exponential distribution with parameter lambda

- state-dependent lambda defined by rate function
 -> any arithmetic function including
 the transition’s pre-places as integer variables and
 user-defined real-valued parameters
 -> modifier arcs
 -> popular kinetics:
 mass-action semantics, level semantics

- semantics: Continuous Time Markov Chain (CTMC)
 -> reachability graph + state transition rates

- analysis
 -> standard Markov analysis techniques: transient, steady state
 -> stochastic simulation algorithms (SSA), e.g. Gillespie’s SSA
• *molecules semantics*

\[h_t := c_t \cdot \prod_{p \in \bullet t} \left(\frac{m(p)}{f(p, t)} \right) \]

• *concentration levels semantics*

\[h_t := k_t \cdot N \cdot \prod_{p \in \bullet t} \left(\frac{m(p)}{N} \right) \]
Stochastic Simulation

Stochastic Output – 100 Levels

Concentration (Levels)

Time (s)
DETERMINISTIC SIMULATION

Deterministic Output

Concentration (μMol)

Time (s)
CONTINUOUS
PETRI NETS
- CPN -
CONTINUOUS PETRI NETS, BASICS

- transitions fire continuously

- rate functions
 -> any arithmetic function including
 the transition’s pre-places as real-valued variables and
 user-defined real-valued parameters

- real-valued tokens
 -> concentrations

- semantics: set of Ordinary Differential Equations (ODEs)
 -> uniquely defined, but not vice versa
 -> typically non-linear

- simulation (numerical integration)
 -> stiff/unstiff solvers
CONTINUOUS PETRI NET DEFINES ODEs

PN & Systems Biology

monika.heiner@informatik.tu-cottbus.de

August 2010
\[\frac{dm_3}{dt} = \]
\[
\frac{dm_3}{dt} = + r_1 + r_4
\]
\[
\frac{dm_3}{dt} = + r_1 \\
+ r_4 \\
- r_2 \\
- r_3
\]
\[\frac{dm_3}{dt} = + k_1 \cdot m_1 \cdot m_2 \\
+ r_4 \\
- r_2 \\
- r_3 \]
\[\frac{dm_3}{dt} = + k_1 \times m_1 \times m_2 \\
+ k_4 \times m_4 \\
- k_2 \times m_3 \\
- k_3 \times m_3 \times m_9 \]
THE QUALITATIVE MODEL BECOMES THE STRUCTURED DESCRIPTION OF THE QUANTITATIVE MODEL!
Quantitative Analysis

<table>
<thead>
<tr>
<th>Species</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
<th>S11</th>
<th>S12</th>
<th>S13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raf-1*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RKIP</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Raf-1*_RKIP</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Raf-1*_RKIP_ERK-PP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ERK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RKIP-P</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MEK-PP</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MEK-PP_ERK</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ERK-PP</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RP</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RKIP-P_RP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Cho et al.

13 "good" state configurations

Biochemist

the "bad" ones
QUANTITATIVE ANALYSIS
SUMMARY
representation of bionetworks by Petri nets

- partial order representation \rightarrow better comprehension
- formal semantics \rightarrow sound analysis techniques
- unifying view
SUMMARY

- representation of bionetworks by Petri nets
 - partial order representation -> better comprehension
 - formal semantics -> sound analysis techniques
 - unifying view

- purposes
 - animation -> to experience the model
 - model validation against consistency criteria -> to increase confidence
 - qualitative / quantitative behaviour prediction -> experiment design, new insights
SUMMARY

- representation of bionetworks by Petri nets
 - partial order representation -> better comprehension
 - formal semantics -> sound analysis techniques
 - unifying view

- purposes
 - animation -> to experience the model
 - model validation against consistency criteria -> to increase confidence
 - qualitative / quantitative behaviour prediction -> experiment design, new insights

- step-wise model development
 - qualitative model -> discrete Petri nets
 - discrete quantitative model -> stochastic Petri nets
 - continuous quantitative model -> continuous Petri nets = ODEs
Toolkit - Snoopy’s Export Features

- Latex
- MetaTool
- Continuous PN
- Extended PN
- Stochastic PN
- Petri Net
- Music PN
- Modulo PN
- Time PN
- SBML Level 2
- APNN
- INA
- LoLA
- Maria
- PEP
- Prod
- Tina
- INA tim
- INA tmd
- PRISM
- SMART
- IDD-CSL
- EPS; MIF; Xfig
- Charlie

All net classes export to EPS; MIF; Xfig.
All Petri net classes are read by Charlie.

monika.heiner@informatik.tu-cottbus.de

August 2010
PRINCIPAL COLLABORATORS

- **Rainer Breitling**

 University Glasgow, Integrative and Systems Biology & University of Groningen, Groningen Bioinformatics Centre

- **David Gilbert**

 Brunel University London/Uxbridge, School of Information Systems, Computing and Mathematics

- **Wolfgang Marwan**

 Otto von Guericke University & Magdeburg Centre for Systems Biology & Max Planck Institute for Dynamics of Complex Technical Systems

- **Louchka Popova-Zeugmann**

 Humboldt University Berlin, Computer Science Institute
REFERENCES, CASE STUDIES QPN - SPN - CPN

- M Heiner, R Donaldson, D Gilbert:

- D Gilbert, M Heiner, S Rosser, R Fulton, X Gu, M Trybilo:

- M Heiner, D Gilbert, R Donaldson:

- R Breitling, D Gilbert, M Heiner, R Orton:
 A structured approach for the engineering of biochemical network models, illustrated for signalling pathways; Briefings in Bioinformatics, September 2008; 9: 404 - 421.

- D Gilbert, M Heiner, S Lehrack:
REFERENCES, TOOLS

- M Heiner, C Rohr, M Schwarick, S Streif:

- C Rohr, W Marwan, M Heiner:
 Snoopy - a unifying Petri net framework to investigate biomolecular networks;
 Bioinformatics 2010 26(7): 974-975

- M Heiner, S Lehrack, D Gilbert, W Marwan:
 Extended Stochastic Petri Nets for Model-based Design of Wet-lab Experiments;

- M Heiner, M Schwarick, A Tovchigrechko:

- M Schwarick, M Heiner:
Thanks!

http://www-dssz.informatik.tu-cottbus.de