Part IV PN-Based Model Checking of Biochemical Networks

Monika Heiner

joint work with David Gilbert (London/UK), Robin Donaldson (Glasgow/UK)

University of Zaragoza, February 23, 2010

• modelling as formal knowledge representation

• modelling as formal knowledge representation

many assumptions, fuzzy/changing/growing knowledge

• modelling as formal knowledge representation

many assumptions, fuzzy/changing/growing knowledge model needs to be validated

• modelling for system construction

3

• modelling for system construction

reliable and robust engineering

э

• modelling for system construction

reliable and robust engineering models serve as blueprint, need to be verified

In a sentence :

• "Formally check whether a model of a biochemical system does what we want"

Components :

- a model
 - the current description of a biochemical system of interest
- a property
 - a property which we think the system should have
- a model checker
 - a program to test whether the model has the property

A B A A B

What can we do with Model Checking?

model validation

- Show that our model of the pathway matches the (stochastic) lab data.

• model analysis

- In a collection of variants of a model (e.g., in silico gene knock-outs), which models show a certain behaviour (loss of oscillations \dots)?

• model development

- If the model doesn't do what we want, change the model automatically until it does! (parameters, structures, ...)

• model finding

- Many models in a database; can use model checking to query the database :

"Give me all the models in the database which oscillate."

- biosystem verification synthetic biology
 - Does the constructed system do what we intended?

Biologists will often talk in qualitative or semi- quantitative language (trends).

- "This protein peaks after 5 minutes, then falls to half concentration."
- Often quite certain about time,
- but not about concentrations.

Lab data versus simulations

Simulation

Monika Heiner Part IV PN-Based Model Checking of Biochemical Network

<ロ> (四) (四) (三) (三) (三)

2

Examples :

- after 100 seconds the concentration of Protein1 is stable
- protein1 peaks and falls
- protein1 peaks and stays constant
- protein1 peaks before Protein2
- protein1 oscillates 4 times in 5,000 seconds
- molecules of protein2 are required for molecules of protein1 to be created

Various logics each with different expressivity :

- Branching-time logics consider all branching time lines
 - Computational Tree Logic (CTL)
 - Continuous Stochastic Logic (CSL)

"There is a possibility that I will stay hungry forever." "There is a possibility that eventually I am no longer hungry."

- Linear-time logics consider separately all single time lines
 - Linear-time Temporal Logics (LTL, LTLc, PLTLc)
 - "I am hungry." "I am always hungry." "I will eventually be hungry." "I will be hungry until I eat something."

A 35 A 4

Running Case Study

• ... a typical signalling cascade

A B M A B M

э

Running Case Study

• ... a typical signalling cascade

modelled in [Levchenko et al. 2000] like this

∃ → < ∃</p>

[Levchenko et al. 2000], Supplemental Material : ODEs

d Raf/d t	=	$\mathbf{k}_{2}*\mathbf{Raf}_{\mathbf{Ras}\mathbf{GTP}}+\mathbf{k}_{6}*\mathbf{RafP}_{\mathbf{P}}\mathbf{hase1}-\mathbf{k}_{1}*\mathbf{Raf}*\mathbf{Ras}\mathbf{GTP}$
$d { m RasGTP} / d { m t}$	=	$k_2*Raf_RasGTP+k_3*Raf_RasGTP-k_1*Raf*RasGTP$
$d \operatorname{Raf}_{\operatorname{RasGTP}}/d \operatorname{t}$	=	$\mathbf{k_1} * \mathbf{Raf} * \mathbf{RasGTP} - \mathbf{k_2} * \mathbf{Raf}_\mathbf{RasGTP} - \mathbf{k_3} * \mathbf{Raf}_\mathbf{RasGTP}$
$d { m RafP}/d { m t}$	=	$\begin{array}{l} k_3*Raf_RasGTP+k_{12}*MEKP_RafP+k_9*MEK_RafP+k_5*RafP_Phase1+k_8*MEK_RafP+k_{11}*MEKP_RafP-k_7*RafP*MEK-k_{10}*MEKP*RafP-k_4*Phase1*RafP \end{array}$
d RafP_Phase1/ d t	=	$\mathbf{k}_4*\mathbf{Phase1}*\mathbf{RafP}-\mathbf{k}_5*\mathbf{RafP}_\mathbf{Phase1}-\mathbf{k}_6*\mathbf{RafP}_\mathbf{Phase1}$
d MEK_RafP/ d t	=	$k_7*RafP*MEK-k_8*MEK_RafP-k_9*MEK_RafP$
d MEKP_RafP/ d t	=	$\mathbf{k_{10}}*\mathrm{MEKP}*\mathrm{RafP}-\mathbf{k_{11}}*\mathrm{MEKP}_\mathrm{RafP}-\mathbf{k_{12}}*\mathrm{MEKP}_\mathrm{RafP}$
d MEKP_Phase2/ d t	=	$\mathbf{k_{16}*Phase2*MEKP}-\mathbf{k_{18}*MEKP_Phase2}-\mathbf{k_{17}*MEKP_Phase2}$
d MEKPP_Phase2/ d t	=	$k_{13}*MEKPP*Phase2-k_{15}*MEKPP_Phase2-k_{14}*MEKPP_Phase2-k_{14}*MEKPP_Phase2-k_{14}*MEKPP_Phase2-k_{14}*MEKPP_Phase2-k_{15}*MEKPP_Phase2-k_{14}*MEKPPP_Phase2-k_{14}*MEKPPP_Phase2-k_{14}*MEKPPP_Phase2-k_{14}*MEKPPP_Phase2-k_{14}*MEKPPP_Phase2-k_{14}*MEKPPP_Phase2-k_{14}*MEKPPP_Phase2-k_{14}*MEKPPP_Pha$
$d \mathrm{ERK}/d \mathrm{t}$	=	$k_{20} * \mathrm{ERK}_\mathrm{MEKPP} + k_{30} * \mathrm{ERKP}_\mathrm{Phase3} - k_{19} * \mathrm{MEKPP} * \mathrm{ERK}$
d ERK_MEKPP/ d t	=	$\mathbf{k_{19}}*\mathrm{MEKPP}*\mathrm{ERK}-\mathbf{k_{20}}*\mathrm{ERK}_\mathrm{MEKPP}-\mathbf{k_{21}}*\mathrm{ERK}_\mathrm{MEKPP}$
d ERKP_MEKPP/ d t	=	$\mathbf{k_{22}}*\mathrm{MEKPP}*\mathrm{ERKP}-\mathbf{k_{24}}*\mathrm{ERKP}_\mathrm{MEKPP}-\mathbf{k_{23}}*\mathrm{ERKP}_\mathrm{MEKPP}$
etcetera	=	

(3)

Running Case Study

Monika Heiner Part IV PN-Based Model Checking of Biochemical Network

• initial marking construction P-invariants

• • = • • = •

э

Qualitative Analysis

- initial marking construction P-invariants
- subnetwork identification
 - P-invariants : token preserving modules (mass conservation)
 - T-invariants : state repeating modules (*elementary modes*)

< 3 > < 3</p>

Qualitative Analysis

- initial marking construction P-invariants
- subnetwork identification
 - P-invariants : token preserving modules (mass conservation)
 - T-invariants : state repeating modules (*elementary modes*)
- general behavioural properties
 - boundedness : every place gets finite token number only
 - liveness : every transition may happen forever
 - reversibility : every state may be reached forever

Qualitative Analysis

- initial marking construction P-invariants
- subnetwork identification
 - P-invariants : token preserving modules (mass conservation)
 - T-invariants : state repeating modules (*elementary modes*)
- general behavioural properties
 - boundedness : every place gets finite token number only
 - liveness : every transition may happen forever
 - reversibility : every state may be reached forever
- special behavioural properties CTL / LTL model checking

A B M A B M

Running Case Study - P-invariants

Monika Heiner Part IV PN-Based Model Checking of Biochemical Network

э

Running Case Study - P-invariants

Monika Heiner Part IV PN-Based Model Checking of Biochemical Network

э

Running Case Study - P-invariants

Running Case Study - initial marking

Monika Heiner Part IV PN-Based Model Checking of Biochemical Network

● Covered by P-invariants (CPI) ⇒ **bounded**

< ∃ > <

- Covered by P-invariants (CPI) \Rightarrow **bounded**
- Deadlock-Trap Property (DTP) holds \Rightarrow **no dead states**

- Covered by P-invariants (CPI) \Rightarrow **bounded**
- Deadlock-Trap Property (DTP) holds \Rightarrow **no dead states**

state space

levels	reachability graph	IDD data structure
	number of states	number of nodes
1	118	52
4	$2.4 \cdot 10^{4}$	115
8	$6.1\cdot10^{6}$	269
80	$5.6 \cdot 10^{18}$	13,472
120	$1.7 \cdot 10^{21}$	29,347

→ ∃ → < ∃</p>

- Covered by P-invariants (CPI) \Rightarrow **bounded**
- Deadlock-Trap Property (DTP) holds \Rightarrow **no dead states**

state space

levels	reachability graph	IDD data structure
	number of states	number of nodes
1	118	52
4	$2.4 \cdot 10^4$	115
8	$6.1\cdot 10^6$	269
80	$5.6 \cdot 10^{18}$	13,472
120	$1.7 \cdot 10^{21}$	29,347

reachability graph

- strongly connected \Rightarrow **reversible**
- contains every transition (reaction) \Rightarrow live

Running Case Study - T-invariants

Monika Heiner Part IV PN-Based Model Checking of Biochemical Network

æ

Running Case Study - partial order run of I/O T-invariant

Running Case Study - partial order run of I/O T-invariant

There is a path ...

- *EX* ϕ
 - if there is a state reachable by one step where ϕ holds.
- *EF* ϕ
 - if there is a path where ϕ holds finally, i.e., at some point.
- *EG* ϕ
 - if there is a path where ϕ holds globally, i.e., forever.
- $E(\phi_1 U \phi_2)$
 - if there is a path where ϕ_1 holds until ϕ_2 holds.

• • = • • = •

For all path ...

- *AX* ϕ
 - if ϕ holds for all states which are reachable by one step.
- **AF** ϕ
 - if ϕ holds finally (at some point) for all paths.
- *AG* ϕ
 - if ϕ holds globally (i.e. for ever) for all paths.
- $A(\phi_1 U \phi_2)$
 - if ϕ_1 holds until ϕ_2 holds for all paths.

Qualitative Model Checking (CTL)

property Q1 :

The signal sequence predicted by the partial order run of the I/O T-invariant is the only possible one; i.e., starting at the initial state, it is necessary to pass through RafP, MEKP, MEKPP and ERKP in order to reach ERKPP.

$$\neg \begin{bmatrix} \mathbf{E} (\neg \mathsf{RafP} \ \mathbf{U} \ \mathsf{MEKP}) \lor \\ \mathbf{E} (\neg \mathsf{MEKP} \ \mathbf{U} \ \mathsf{MEKPP}) \lor \\ \mathbf{E} (\neg \mathsf{MEKPP} \ \mathbf{U} \ \mathsf{ERKP}) \lor \\ \mathbf{E} (\neg \mathsf{ERKP} \ \mathbf{U} \ \mathsf{ERKPP}) \end{bmatrix}$$

Stochastic Model Checking - Preparation

- isomorphy of reachability graph and CTMC, thus all qualitative properties still valid
- How many levels needed for quantitative evaluation?
 - state space(1 levels) = 118 (Boolean interpretation)
 - state space(4 levels) = 24,065
 - state space(8 levels) = 6,110,643
- equivalence check

$$C_{RafP}(t) = \underbrace{\frac{0.1}{s}}_{expected value of L_{RafP}(t) = i)} \underbrace{\sum_{i=1}^{4s} (i \cdot P(L_{RafP}(t) = i))}_{expected value of L_{RafP}(t)}$$

• equivalence check, results, e.g. for MEK :

• equivalence check, results, e.g. for RasGTP :

Stochastic Model Checking (CSL) - Basics

Replaces the path quantifiers (E, A) in CTL by the probability operator $P_{\leq x}$, where $\leq x$ specifies the probability x of the formula.

- $P_{=?}[X\phi]$
 - prob there is a state reachable by one step where ϕ holds.
- *P*_{=?}[*F* ϕ]
 - prob there is a path where ϕ holds finally, i.e., at some point.
- *P*_{=?}[*G* ϕ]
 - prob there is a path where ϕ holds globally, i.e., forever.
- $P_{=?}[\phi_1 U \phi_2]$
 - prob there is a path where ϕ_1 holds until ϕ_2 holds.

Syntactic sugar

φ₁{φ₂} - φ₁ happens from the first time φ₂ happens, where no temporal operators in φ₂.

《曰》 《國》 《臣》 《臣》 三臣

property S1 :

What is the probability of the concentration of RafP increasing, when starting in a state where the level is already at L?

$$\mathbf{P}_{=?}$$
 [(RafP = L) $\mathbf{U}^{<=100}$ (RafP > L) { RafP = L }]

property S2 :

What is the probability that RafP is the first species to react?

 $\begin{array}{l} \textbf{P}_{=?}\left[\,\left(\;\left(\;\mathsf{MEKPP}\;=\;0\;\right)\land\left(\;\mathsf{ERKPP}\;=\;0\;\right)\;\right)\,\textbf{U}^{<=100}\left(\;\mathsf{RafP}>\;L\;\right) \\ \left\{\;\left(\;\mathsf{MEKPP}\;=\;0\;\right)\land\left(\;\mathsf{ERKPP}\;=\;0\;\right)\;\land\left(\;\mathsf{RafP}=\;0\;\right)\;\right\}\;\right] \end{array}$

Example figures for MC2 model checking of property S1 at varying number of levels/molecules.

Levels	MC Time ^a	Simulation Output Size
4	10 s ^b	750 KB
8	15 s ^b	1.5 MB
40	1.5 minutes ^b	7.5 MB
400	1 minute ^c	80 MB
4,000	30 minutes ^c	900 MB

^a Both Gillespie simulation and MC2 checking.

^b Computation on a standard workstation.

^c Distributed computation on a computer cluster comprising 45 Sun X2200 servers each with 2 dual core processors (180 CPU cores).

• • = • • = •

Stochastic Model Checking - Simulative Approach

• S1 at varying number of molecules shows progression towards deterministic behaviour as number of molecules increases.

40 Molecules

Monika Heiner

Part IV PN-Based Model Checking of Biochemical Network

Stochastic Model Checking - Simulative Approach

• *S2* at varying number of molecules shows progression towards deterministic behaviour as number of molecules increases.

Monika Heiner

Part IV PN-Based Model Checking of Biochemical Network

Continuous Model Checking - Preparation

• steady state analysis, results for all 118 'good' states, e.g. for MEK :

Continuous Model Checking - Preparation

• steady state analysis for state 1 :

(日) (同) (三) (三)

Continuous Model Checking - Preparation

• steady state analysis for state 10 :

(日) (同) (三) (三)

For all single path ...

- **X** ϕ
 - ϕ happens in the next time point.
- **F** \phi
 - ϕ happens at some time.
- **G** \phi
 - ϕ always happens.
- $A(\phi_1 U \phi_2)$
 - ϕ_1 happens until ϕ_2 happens.

Syntactic sugar

• $\phi_1{\phi_2}$ - ϕ_1 happens from the first time ϕ_2 happens, where no temporal operators in ϕ_2 .

Continuous Model Checking (LTLc)

• transient analysis for RasGTP, RafP, MEKPP, ERKPP :

Monika Heiner Part IV PN-Based Model Checking of Biochemical Network

• • = • • = •

property C1 :

The concentration of RafP rises to a significant level, while the concentrations of MEKPP and ERKPP remain close to zero; i.e. *RafP is really the first species to react.*

((MEKPP $< 0.001) \land (\mathsf{ERKPP} < 0.0002)$) U (RafP > 0.06)

property C2 :

if the concentration of RafP is at a significant concentration level and that of ERKPP is close to zero, then both species remain in these states until the concentration of MEKPP becomes significant; i.e. *MEKPP is the second species to react.*

```
( (RafP > 0.06) \land (ERKPP < 0.0002) ) \Rightarrow
( (RafP > 0.06) \land (ERKPP < 0.0002) ) U (MEKPP > 0.004)
```

property C3 :

if the concentrations of RafP and MEKPP are significant, they remain so, until the concentration of ERKPP becomes significant; i.e. *ERKPP is the third species to react.*

((RafP > 0.06) \land (MEKPP > 0.004)) \Rightarrow ((RafP > 0.06) \land (MEKPP > 0.004)) U (ERKPP > 0.0005)

(日) (同) (日) (日)

э

- validation criterion 1
 - all expected structural properties hold
 - all expected general behavioural properties hold

< ∃ > <

- validation criterion 1
 - all expected structural properties hold
 - all expected general behavioural properties hold
- validation criterion 2
 - OPI
 - no minimal P-invariant without biological interpretation (?)

• validation criterion 1

- all expected structural properties hold
- all expected general behavioural properties hold
- validation criterion 2
 - CPI
 - no minimal P-invariant without biological interpretation (?)
- validation criterion 3
 - CTI
 - no minimal T-invariant without biological interpretation
 - no known biological behaviour without corresponding T-invariant

(*) *) *) *)

• validation criterion 1

- all expected structural properties hold
- all expected general behavioural properties hold
- validation criterion 2
 - CPI
 - no minimal P-invariant without biological interpretation (?)
- validation criterion 3
 - CTI
 - no minimal T-invariant without biological interpretation
 - no known biological behaviour without corresponding T-invariant

• validation criterion 4

- all expected special behavioural properties hold
- temporal-logic properties yield TRUE

qualitative & stochastic & continuous paradigms

• • = • • = •

э

qualitative & stochastic & continuous paradigms

- three models sharing structure
 - qualitative Petri nets \rightarrow time-free analyses
 - stochastic Petri nets \rightarrow CTMC
 - continuous Petri nets \rightarrow ODEs

- (I) (I

qualitative & stochastic & continuous paradigms

- three models sharing structure
 - qualitative Petri nets \rightarrow time-free analyses
 - stochastic Petri nets \rightarrow CTMC
 - $\bullet~$ continuous Petri nets $\rightarrow~$ ODEs
- running case study
 - ERK signalling pathway

qualitative & stochastic & continuous paradigms

- three models sharing structure
 - qualitative Petri nets \rightarrow time-free analyses
 - stochastic Petri nets \rightarrow CTMC
 - continuous Petri nets \rightarrow ODEs
- running case study
 - ERK signalling pathway
- focus transient analysis, esp. by
 - transition invariants & partial order run
 - qualitative & stochastic & continuous model checking

qualitative & stochastic & continuous paradigms

- three models sharing structure
 - qualitative Petri nets \rightarrow time-free analyses
 - stochastic Petri nets \rightarrow CTMC
 - continuous Petri nets \rightarrow ODEs
- running case study

ERK signalling pathway

- focus transient analysis, esp. by
 - transition invariants & partial order run
 - qualitative & stochastic & continuous model checking

• not bound to the Petri net perspective

increasing level number = increasing accuracy
 BUT, monotonous liveness holds for substructures (EFC) only !

→ ∃ → < ∃</p>

- increasing level number = increasing accuracy
 BUT, monotonous liveness holds for substructures (EFC) only !
- unbounded qualitative model + time = bounded model BUT, that's not always the case! (structural) criteria for time-dependent boundedness?

- increasing level number = increasing accuracy
 BUT, monotonous liveness holds for substructures (EFC) only !
- unbounded qualitative model + time = bounded model BUT, that's not always the case! (structural) criteria for time-dependent boundedness?
- continuous behaviour = averaged stochastic behaviour
 BUT, that's not always the case !
 stochastic and continuous behaviour may differ; why? when?

- increasing level number = increasing accuracy
 BUT, monotonous liveness holds for substructures (EFC) only !
- unbounded qualitative model + time = bounded model BUT, that's not always the case! (structural) criteria for time-dependent boundedness?
- continuous behaviour = averaged stochastic behaviour
 BUT, that's not always the case !
 stochastic and continuous behaviour may differ; why? when?
- sharing structure = sharing properties
 BUT, to which extend?
 relation : qualitative properties & continuous behaviour?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- all data files and analysis results available at www-dssz.informatik.tu-cottbus.de/examples/levchenko
- M Heiner, D Gilbert, R Donaldson : Petri Nets for Systems and Synthetic Biology; SFM 2008, Springer LNCS 5016, pp. 215-264, 2008.