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Models in Synthetic Biology

modelling for system construction

biosystem
synthetic
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predicted
behaviour
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(blueprint)

desired
behaviour

design construction

verification verification

reliable and robust engineering

models serve as blueprint, need to be verified
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Model Checking

In a sentence :

"Formally check whether a model of a biochemical system
does what we want"

Components :

a model
- the current description of a biochemical system of interest

a property
- a property which we think the system should have

a model checker
- a program to test whether the model has the property
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What can we do with Model Checking ?

model validation
- Show that our model of the pathway matches the
(stochastic) lab data.

model analysis
- In a collection of variants of a model (e.g., in silico gene
knock-outs), which models show a certain behaviour (loss of
oscillations . . .) ?

model development
- If the model doesn’t do what we want, change the model
automatically until it does ! (parameters, structures, . . .)

model finding
- Many models in a database ; can use model checking to
query the database :
"Give me all the models in the database which oscillate."

biosystem verification - synthetic biology
- Does the constructed system do what we intended ?
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Describing experimental data

Biologists will often talk in qualitative or semi- quantitative
language (trends).

"This protein peaks after 5 minutes, then falls to half
concentration."

Often quite certain about time,

but not about concentrations.
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Lab data versus simulations
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Properties

Examples :

after 100 seconds the concentration of Protein1 is stable

protein1 peaks and falls

protein1 peaks and stays constant

protein1 peaks before Protein2

protein1 oscillates 4 times in 5,000 seconds

molecules of protein2 are required for molecules of protein1 to
be created
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Temporal logics to formally express properties

Various logics each with different expressivity :

Branching-time logics consider all branching time lines
- Computational Tree Logic (CTL)
- Continuous Stochastic Logic (CSL)

"There is a possibility that I will stay hungry forever."
"There is a possibility that eventually I am no longer hungry."

Linear-time logics consider separately all single time lines
- Linear-time Temporal Logics (LTL, LTLc, PLTLc)

"I am hungry."
"I am always hungry."
"I will eventually be hungry."
"I will be hungry until I eat something."
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Running Case Study

. . . a typical signalling cascade
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MEKP MEKPPMEK

ERKP ERKPPERK
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Running Case Study

. . . a typical signalling cascade

Raf RafP

MEKP MEKPPMEK

ERKP ERKPPERK

Phosphatase3

Phosphatase1

Phosphatase2

RasGTP

modelled in [Levchenko et al. 2000] like this . . .
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Running Case Study - Origin

[Levchenko et al. 2000], Supplemental Material : ODEs

dRaf/dt = k2 ∗ Raf_RasGTP + k6 ∗ RafP_Phase1 − k1 ∗ Raf ∗ RasGTP

dRasGTP/dt = k2 ∗ Raf_RasGTP + k3 ∗ Raf_RasGTP − k1 ∗ Raf ∗ RasGTP

dRaf_RasGTP/dt = k1 ∗ Raf ∗ RasGTP − k2 ∗ Raf_RasGTP − k3 ∗ Raf_RasGTP

dRafP/dt = k3 ∗ Raf_RasGTP + k12 ∗ MEKP_RafP + k9 ∗ MEK_RafP+
k5 ∗ RafP_Phase1 + k8 ∗ MEK_RafP + k11 ∗ MEKP_RafP−

k7 ∗ RafP ∗ MEK − k10 ∗ MEKP ∗ RafP − k4 ∗ Phase1 ∗ RafP

dRafP_Phase1/dt = k4 ∗ Phase1 ∗ RafP − k5 ∗ RafP_Phase1 − k6 ∗ RafP_Phase1

dMEK_RafP/dt = k7 ∗ RafP ∗ MEK − k8 ∗ MEK_RafP − k9 ∗ MEK_RafP

dMEKP_RafP/dt = k10 ∗ MEKP ∗ RafP − k11 ∗ MEKP_RafP − k12 ∗ MEKP_RafP

dMEKP_Phase2/dt = k16 ∗ Phase2 ∗ MEKP − k18 ∗ MEKP_Phase2 − k17 ∗ MEKP_Phase2

dMEKPP_Phase2/dt = k13 ∗ MEKPP ∗ Phase2 − k15 ∗ MEKPP_Phase2 − k14 ∗ MEKPP_Phase2

dERK/dt = k20 ∗ ERK_MEKPP + k30 ∗ ERKP_Phase3 − k19 ∗ MEKPP ∗ ERK

dERK_MEKPP/dt = k19 ∗ MEKPP ∗ ERK − k20 ∗ ERK_MEKPP − k21 ∗ ERK_MEKPP

dERKP_MEKPP/dt = k22 ∗ MEKPP ∗ ERKP − k24 ∗ ERKP_MEKPP − k23 ∗ ERKP_MEKPP

etcetera = ...
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Running Case Study
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Qualitative Analysis

initial marking construction
P-invariants
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Qualitative Analysis

initial marking construction
P-invariants

subnetwork identification

P-invariants : token preserving modules (mass conservation)
T-invariants : state repeating modules (elementary modes)
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Qualitative Analysis

initial marking construction
P-invariants

subnetwork identification

P-invariants : token preserving modules (mass conservation)
T-invariants : state repeating modules (elementary modes)

general behavioural properties

boundedness : every place gets finite token number only
liveness : every transition may happen forever
reversibility : every state may be reached forever
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Qualitative Analysis

initial marking construction
P-invariants

subnetwork identification

P-invariants : token preserving modules (mass conservation)
T-invariants : state repeating modules (elementary modes)

general behavioural properties

boundedness : every place gets finite token number only
liveness : every transition may happen forever
reversibility : every state may be reached forever

special behavioural properties
CTL / LTL model checking
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Running Case Study - P-invariants
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Running Case Study - P-invariants
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Running Case Study - initial marking
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Running Case Study - general properties

Covered by P-invariants (CPI) ⇒ bounded
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Running Case Study - general properties

Covered by P-invariants (CPI) ⇒ bounded

Deadlock-Trap Property (DTP) holds ⇒ no dead states
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Running Case Study - general properties

Covered by P-invariants (CPI) ⇒ bounded

Deadlock-Trap Property (DTP) holds ⇒ no dead states

state space
levels reachability graph IDD data structure

number of states number of nodes

1 118 52
4 2.4 · 104 115
8 6.1 · 106 269
80 5.6 ·1018 13,472
120 1.7 ·1021 29,347
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Running Case Study - general properties

Covered by P-invariants (CPI) ⇒ bounded

Deadlock-Trap Property (DTP) holds ⇒ no dead states

state space
levels reachability graph IDD data structure

number of states number of nodes

1 118 52
4 2.4 · 104 115
8 6.1 · 106 269
80 5.6 ·1018 13,472
120 1.7 ·1021 29,347

reachability graph

strongly connected ⇒ reversible

contains every transition (reaction) ⇒ live
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Running Case Study - T-invariants
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Running Case Study - partial order run of I/O T-invariant
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Running Case Study - partial order run of I/O T-invariant
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Qualitative Model Checking (CTL) - Basics

There is a path . . .

EXφ

- if there is a state reachable by one step where φ holds.

EFφ

- if there is a path where φ holds finally, i.e., at some point.

EGφ

- if there is a path where φ holds globally, i.e., forever.

E (φ1Uφ2)
- if there is a path where φ1 holds until φ2 holds.
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Qualitative Model Checking (CTL) - Basics

For all path . . .

AXφ

- if φ holds for all states which are reachable by one step.

AFφ

- if φ holds finally (at some point) for all paths.

AGφ

- if φ holds globally (i.e. for ever) for all paths.

A(φ1Uφ2)
- if φ1 holds until φ2 holds for all paths.
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Qualitative Model Checking (CTL)
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property Q1 :

The signal sequence predicted by the partial order run of
the I/O T-invariant is the only possible one ;
i.e., starting at the initial state, it is necessary to pass through
RafP, MEKP, MEKPP and ERKP in order to reach ERKPP.

¬ [ E ( ¬ RafP U MEKP ) ∨
E ( ¬ MEKP U MEKPP ) ∨
E ( ¬ MEKPP U ERKP ) ∨
E ( ¬ ERKP U ERKPP ) ]
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Stochastic Model Checking - Preparation

isomorphy of reachability graph and CTMC,
thus all qualitative properties still valid

How many levels needed for quantitative evaluation ?

state space(1 levels) = 118 (Boolean interpretation)
state space(4 levels) = 24,065
state space(8 levels) = 6,110,643

equivalence check

CRafP(t) = 0.1

s ·
4s∑

i=1

(
i · P(LRafP(t) = i)

)

︸ ︷︷ ︸

expected value of LRafP (t)
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Stochastic Model Checking - Preparation

equivalence check, results, e.g. for MEK :
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Stochastic Model Checking - Preparation

equivalence check, results, e.g. for RasGTP :
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Stochastic Model Checking (CSL) - Basics

Replaces the path quantifiers (E, A) in CTL by the probability
operator PEx , where Ex specifies the probability x of the formula.

P=?[Xφ ]
- prob there is a state reachable by one step where φ holds.

P=?[Fφ ]
- prob there is a path where φ holds finally, i.e., at some point.

P=?[Gφ ]
- prob there is a path where φ holds globally, i.e., forever.

P=?[φ1Uφ2 ]
- prob there is a path where φ1 holds until φ2 holds.

Syntactic sugar

φ1{φ2} - φ1 happens from the first time φ2 happens, where no
temporal operators in φ2.
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Stochastic Model Checking (CSL)

property S1 :

What is the probability of the concentration of RafP increasing,
when starting in a state where the level is already at L ?

P=? [ ( RafP = L ) U<=100 ( RafP > L ) { RafP = L } ]
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Stochastic Model Checking (CSL)

property S2 :

What is the probability that RafP is the first species to react ?

P=? [ ( ( MEKPP = 0 ) ∧ ( ERKPP = 0 ) ) U<=100 ( RafP > L )
{ ( MEKPP = 0 ) ∧ ( ERKPP = 0 ) ∧ ( RafP = 0 ) } ]
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Stochastic Model Checking - Simulative Approach

Example figures for MC2 model checking of property S1 at varying
number of levels/molecules.

Levels MC Timea Simulation Output Size

4 10 s b 750 KB

8 15 s b 1.5 MB

40 1.5 minutes b 7.5 MB
400 1 minute c 80 MB
4,000 30 minutes c 900 MB

a Both Gillespie simulation and MC2 checking.
b Computation on a standard workstation.
c Distributed computation on a computer cluster comprising 45 Sun X2200
servers each with 2 dual core processors (180 CPU cores).
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Stochastic Model Checking - Simulative Approach

S1 at varying number of molecules shows progression towards
deterministic behaviour as number of molecules increases.
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Stochastic Model Checking - Simulative Approach

S2 at varying number of molecules shows progression towards
deterministic behaviour as number of molecules increases.
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Continuous Model Checking - Preparation

steady state analysis, results for all 118 ‘good’ states, e.g. for
MEK :
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Continuous Model Checking - Preparation

steady state analysis for state 1 :
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Continuous Model Checking - Preparation

steady state analysis for state 10 :
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Continuous Model Checking (LTLc) - Basics

For all single path . . .

Xφ

- φ happens in the next time point.

Fφ

- φ happens at some time.

Gφ

- φ always happens.

A(φ1Uφ2)
- φ1 happens until φ2 happens.

Syntactic sugar

φ1{φ2} - φ1 happens from the first time φ2 happens, where no
temporal operators in φ2.
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Continuous Model Checking (LTLc)

transient analysis for RasGTP, RafP, MEKPP, ERKPP :
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Continuous Model Checking (LTLc)

property C1 :

The concentration of RafP rises to a significant level, while the
concentrations of MEKPP and ERKPP remain close to zero ;
i.e. RafP is really the first species to react.

( (MEKPP < 0.001) ∧ (ERKPP < 0.0002) ) U (RafP > 0.06)
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Continuous Model Checking (LTLc)

property C2 :

if the concentration of RafP is at a significant concentration level
and that of ERKPP is close to zero, then both species remain in
these states until the concentration of MEKPP becomes
significant ; i.e. MEKPP is the second species to react.

( (RafP > 0.06) ∧ (ERKPP < 0.0002) ) ⇒
( (RafP > 0.06)∧ (ERKPP < 0.0002) ) U (MEKPP > 0.004)
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Continuous Model Checking (LTLc)

property C3 :

if the concentrations of RafP and MEKPP are significant, they
remain so, until the concentration of ERKPP becomes significant ;
i.e. ERKPP is the third species to react.

( (RafP > 0.06) ∧ (MEKPP > 0.004) ) ⇒
( (RafP > 0.06)∧ (MEKPP > 0.004) ) U (ERKPP > 0.0005)
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Bionetworks, Validation

validation criterion 1

all expected structural properties hold
all expected general behavioural properties hold
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all expected structural properties hold
all expected general behavioural properties hold

validation criterion 2

CPI
no minimal P-invariant without biological interpretation ( ?)

Monika Heiner Part IV PN-Based Model Checking of Biochemical Networks



Bionetworks, Validation

validation criterion 1

all expected structural properties hold
all expected general behavioural properties hold

validation criterion 2

CPI
no minimal P-invariant without biological interpretation ( ?)

validation criterion 3

CTI
no minimal T-invariant without biological interpretation
no known biological behaviour without corresponding
T-invariant
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Bionetworks, Validation

validation criterion 1

all expected structural properties hold
all expected general behavioural properties hold

validation criterion 2

CPI
no minimal P-invariant without biological interpretation ( ?)

validation criterion 3

CTI
no minimal T-invariant without biological interpretation
no known biological behaviour without corresponding
T-invariant

validation criterion 4

all expected special behavioural properties hold
temporal-logic properties yield TRUE

Monika Heiner Part IV PN-Based Model Checking of Biochemical Networks



Summary

unifying framework
qualitative & stochastic & continuous paradigms
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qualitative & stochastic & continuous paradigms

three models sharing structure

qualitative Petri nets → time-free analyses
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continuous Petri nets → ODEs
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Summary

unifying framework
qualitative & stochastic & continuous paradigms

three models sharing structure

qualitative Petri nets → time-free analyses
stochastic Petri nets → CTMC
continuous Petri nets → ODEs

running case study
ERK signalling pathway

focus - transient analysis, esp. by

transition invariants & partial order run
qualitative & stochastic & continuous model checking
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Summary

unifying framework
qualitative & stochastic & continuous paradigms

three models sharing structure

qualitative Petri nets → time-free analyses
stochastic Petri nets → CTMC
continuous Petri nets → ODEs

running case study
ERK signalling pathway

focus - transient analysis, esp. by

transition invariants & partial order run
qualitative & stochastic & continuous model checking

not bound to the Petri net perspective
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Some Open Problems

increasing level number = increasing accuracy
BUT, monotonous liveness holds for substructures (EFC)
only !
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BUT, monotonous liveness holds for substructures (EFC)
only !

unbounded qualitative model + time = bounded model
BUT, that’s not always the case !
(structural) criteria for time-dependent boundedness ?
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Some Open Problems

increasing level number = increasing accuracy
BUT, monotonous liveness holds for substructures (EFC)
only !

unbounded qualitative model + time = bounded model
BUT, that’s not always the case !
(structural) criteria for time-dependent boundedness ?

continuous behaviour = averaged stochastic behaviour
BUT, that’s not always the case !
stochastic and continuous behaviour may differ ; why ? when ?
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Some Open Problems

increasing level number = increasing accuracy
BUT, monotonous liveness holds for substructures (EFC)
only !

unbounded qualitative model + time = bounded model
BUT, that’s not always the case !
(structural) criteria for time-dependent boundedness ?

continuous behaviour = averaged stochastic behaviour
BUT, that’s not always the case !
stochastic and continuous behaviour may differ ; why ? when ?

sharing structure = sharing properties
BUT, to which extend ?
relation : qualitative properties & continuous behaviour ?
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Finally

all data files and analysis results available at
www-dssz.informatik.tu-cottbus.de/examples/levchenko

M Heiner, D Gilbert, R Donaldson :
Petri Nets for Systems and Synthetic Biology ;
SFM 2008, Springer LNCS 5016, pp. 215-264, 2008.
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