Generalized Hybrid Petri Nets

Mostafa Herajy and Monika Heiner

Chair of Data Structures and Software Dependability,
Computer Science Department,
Brandenburg University of Technology,
Cottbus, Germany

Dagstuhl 2011
Motivations

- Some biological models require to be represented in hybrid way (Cells/Molecular interactions in one model).
- Continuous deterministic simulation does not consider the fluctuation of molecules, specially when there is a low number of them.
- Stochastic Simulation is computational expensive (fast reactions, large number of molecules).
CPN and GSPN

- Continuous Petri Nets:
 - Continuous places
 - Continuous transitions

- Generalized Stochastic Petri Nets
 - Discrete places
 - Stochastic transitions
 - Immediate transitions
 - Deterministic transitions
 - Scheduled transitions
Features of GHPN

- Combines both CPN and GSPN into one class
Features of GHPN

- Combines both CPN and GSPN into one class
- Different transition types \rightarrow different reaction types can be modelled using GHPN

Stiff biochemical networks can be easily modelled and simulated using GHPN.
Features of GHPN

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN
Features of GHPN

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN
- The final model can be simulated using either static or dynamic partitioning
Features of GHPN

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN
- The final model can be simulated using either static or dynamic partitioning
- Biological switch can be easily represented
Features of GHPN

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN
- The final model can be simulated using either static or dynamic partitioning
- Biological switch can be easily represented
Elements

Discrete Continuous

stochastic continuous immediate deterministic

<1> [_SimStart,1,_SimEnd]

Places

stochastic continuous immediate deterministic scheduled

Transitions

standard read inhibitor equal reset modifier

Edges
Connectivity

Continuous transition
Stochastic transition

M. Herajy and M. Heiner
BTU Cottbus
Generalized Hybrid Petri Nets
Examples

- Water Tank
- T7 Phage
- Goutsias Model
The Water Tank Model

Introduction

- Elements
- Connectivity
- Examples

M. Herajy and M. Heiner

Generalized Hybrid Petri Nets
The Water Tank Model

Elements Connectivity Examples

On
Off
Water_tank
Water_increase
Water_decrease
On_to_Off
Off_to_ON
2
0.1
[50,1,51]

Amount of Water
time
water tank
On
Off

M. Herajy and M. Heiner
BTU Cottbus
Generalized Hybrid Petri Nets
T7 Phage

<table>
<thead>
<tr>
<th>No.</th>
<th>Reaction</th>
<th>Propensity</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td><code>gen</code> \rightarrow <code>temp</code></td>
<td>$c_1 \cdot gen$</td>
<td>$c_1 = 0.0025$</td>
</tr>
<tr>
<td>R2</td>
<td><code>temp</code> \rightarrow <code>\phi</code></td>
<td>$c_2 \cdot temp$</td>
<td>$c_2 = 0.25$</td>
</tr>
<tr>
<td>R3</td>
<td><code>temp</code> \rightarrow <code>temp + gen</code></td>
<td>$c_3 \cdot temp$</td>
<td>$c_3 = 1.0$</td>
</tr>
<tr>
<td>R4</td>
<td><code>gen + struct</code> \rightarrow ”virus”</td>
<td>$c_4 \cdot gen \cdot struct$</td>
<td>$c_4 = 7.5 \times 10^{-6}$</td>
</tr>
<tr>
<td>R5</td>
<td><code>temp</code> \rightarrow <code>temp + struct</code></td>
<td>$c_5 \cdot temp$</td>
<td>$c_5 = 1000$</td>
</tr>
<tr>
<td>R6</td>
<td><code>struct</code> \rightarrow <code>\phi</code></td>
<td>$c_6 \cdot struct$</td>
<td>$c_6 = 1.99$</td>
</tr>
</tbody>
</table>

Srivastava et al 2002
T7 Phage (GHPN)

- R_5 and R_6 are represented as continuous reactions.

- R_1, R_2, R_3, and R_4 are represented as continuous reactions.
T7 Phage Simulation Results
Goutsias Model (GHPN)

DNA
DNA_2D
DNA_D
M 10
D
10
RNA
10
R2
R4
R5
R6
R7
R8
R9
R10
R1
R3

k1
0.043
k2
0.0007
k3
71.5
k4
3.9e−06
k5
0.02
k6
0.48
k7
0.0002
k8
9e−12
k9
0.08
k10
0.5

M. Herajy and M. Heiner
BTU Cottbus
Generalized Hybrid Petri Nets
Goutsias Model (Simulation Results)
Simulation Time

<table>
<thead>
<tr>
<th></th>
<th>Continuous</th>
<th>Stochastic</th>
<th>hybrid (static)</th>
<th>hybrid (dynamic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goutsias</td>
<td>0.01</td>
<td>0.972</td>
<td>0.014</td>
<td>0.138</td>
</tr>
<tr>
<td>T7 Phage</td>
<td>0.007</td>
<td>12.36</td>
<td>0.210</td>
<td>0.107</td>
</tr>
</tbody>
</table>
Try It Now

- Get your copy at: http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
- The implementation is freely available as part of Snoopy
- GHPN enjoys all of Snoopy features
Thank You