Introduction

A Steering Server for Collaborative Simulation

of Quantitative Petri Nets

Mostafa Herajy ! and Monika Heiner 2

Department of Mathematics and Computer Science, Faculty of Science,
Port Said University - Port Said, Egypt

Computer Science Institute, Brandenburg University of Technology
Cottbus, Germany

Tunis 2014




Introduction

Agenda

Introduction
Interacting with S*
Architecture

Use Case

Conclusion




Introduction

Modelling of Biochemical Reaction Networks

Biological Phenomenon




Introduction

Modelling of Biochemical Reaction Networks

o) (o Understanding

o)
= Mpp

M oy

N

Diagrammatic Description

Biological Phenomenon




Introduction

Modelling of Biochemical Reaction Networks

b \1 By'e
r-wwl B+ I(“'

[ (1-C)
g odke

Formulation /‘r A\

TR NG
ODEs

Diagrammatic Description

Understanding

Biological Phenomenon




Introduction

Modelling of Biochemical Reaction

“

=

B, U-Bps

& =Bk

i I- o

E:Akﬂm-ﬂka‘
ODEs

Tk Formulation
o

Understanding

Diagrammatic Description Biological Phenomenon

Representation




Introduction

Modelling of Biochemical Reaction Networks

ey 2 Mpy X lu,,
A+ K Formulation £ PN h Understanding
O M —

“
=
B, U-Bps
& =Bk
i I- o
E:Akﬂm-ﬂka‘

ODEs

B Py wep
i L 0
"k

,
5

p/

Diagrammatic Description

Biological Phenomenon

Representation



Introduction

Modelling of Biochemical Reaction Networks

I

b \1 By'e
r-wwl B K,

ol
i« I-
7

ODEs

Representation

C'\
=GPk s i

Diagrammatic Description

Simulation

Understanding

Biological Phenomenon



Introduction

Modelling of Biochemical Reaction Networks

u s
i Ry Formulation Understanding
B (1-Bf B

i€ - o
ODEs

Diagrammatic Description Biological Phenomenon

Results

Representation

Execution



Introduction

Modelling of Biochemical Reaction Networks

u fi
e T Formulation Understanding
I} (1-Bps e
E:A‘wiwl-ﬁk“‘ﬁ— y 7,'1\%.
I- .
AT
N iy Diagrammatic Description Biological Phenomenon

ODEs

Results

Representation

Execution



Introduction

Modelling of Biochemical Reaction Networks

u s
i Ry Formulation Understanding
B (1-Bf B

i€ - o
ODEs

Diagrammatic Description Biological Phenomenon

Results

Representation

Execution



Introduction

Modelling of Biochemical Reaction Networks

T Formulation
B

s L
"+

“

=

B, U-Bps

& =Bk

i I- o

E:Akﬂm-&‘km‘
ODEs

Understanding

Diagrammatic Description Biological Phenomenon

Intermediate
Results

Representation

Execution Steering



Introduction

Modelling of Biochemical Reaction Networks

u s
i Ry Formulation Understanding
B (1-Bf B

i€ - o
ODEs

Diagrammatic Description

/ Intermediate

Results

Biological Phenomenon

Representation

Execution Steering




Introduction

S4— Motivations

m Currently existing Petri net tools focus on facilitating
model constructions, but pay little attention to
simulation features.




Introduction

S4— Motivations

m Currently existing Petri net tools focus on facilitating
model constructions, but pay little attention to
simulation features.

m Certain biological models require sophisticated
simulation environments during model execution.




Introduction

S4— Motivations

m Currently existing Petri net tools focus on facilitating
model constructions, but pay little attention to
simulation features.

m Certain biological models require sophisticated
simulation environments during model execution.

m Utilize the computational power of high performance
computers.




Introduction

S4— Motivations

m Currently existing Petri net tools focus on facilitating
model constructions, but pay little attention to
simulation features.

m Certain biological models require sophisticated
simulation environments during model execution.

m Utilize the computational power of high performance
computers.

m The need to reduce the overall required time to run an
experiment.




Introduction

S4— Motivations

m Currently existing Petri net tools focus on facilitating
model constructions, but pay little attention to
simulation features.

m Certain biological models require sophisticated
simulation environments during model execution.

m Utilize the computational power of high performance
computers.

m The need to reduce the overall required time to run an
experiment.

m The need to promote knowledge sharing between
different users.
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S4— Features

Remotely run and control a simulation.

m Execution of one model using different simulation
algorithms.

Managing different models concurrently with possibly
different simulators.

Defining different views to explore simulation results.

Exploring the running models on-the-fly.
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S*- Features (Cont.)

Steering simulation parameters while a simulation is
running.

Controlling the simulation speed.

Connecting to a simulation at any time from whatever
place.

Collaborating with other people while simulating a
model.

m Platform-independent implementation.
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Interacting with sS4

Model Definition

We can define a model via:

® Snoopy

m Application Programming Interface
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Model Definition via Snoopy1
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Model Definition via API

El spsa: :Model* CreateModel()

{

{

e model is named "My model™ with one transiton and three places

spsa: :Model® 1 pcMyModel=new spsa::Model (NULL,wxT("My Model"},1,3);

return 1_pcMyModel:

Elvoid AddPlaces (spsa: :Model® p pcModel)

ffadd the places

spsa::VectorString 1 asPlaceNames;

1_asPlaceNames.clear ():

/el

1_asPlaceNames.push_back (wxT("pl")):
p2

1_asPlaceNames.push_back (wxT("p2")):

1_asPlaceNames.push back (wxT("p3"));

//set place names
p_pcModel->S5etPlacelNames (1_asPlaceNames) ;

II(‘il](‘)‘- 2(:]14
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Model Definition via API (Cont.)

spsa::SteeringCommunicator|
spsa::SteeringBase

spsa::SteeringVector

spsa::Model spsa::ModelView ' spsa::SteeringControl

spsa::ColoredModel

spsa::SteeringClient spsa::SteeringServer
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Model Exploration

r 5
Running Models &J
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8no
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Architecture
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Architecture

Available Simulators®
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Use Case
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Live Demo using 54




Conclusion

For More Information:

m Visit our website: http://www-dssz.informatik.
tu-cottbus.de/DSSZ/Software/Snoopy

m S* user manual

m Join us at the Tools Exhibition, Thursday 13:30



http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
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