PETRI NETS 4
BACTERIAL BIOENGINEERING

Monika Heiner

on sabbatical leave from Brandenburg Technical University
Computer Science Institute
THE PETRI NET FRAMEWORK
.. ARE NETWORKS OF BIOCHEMICAL REACTIONS

2 NAD$^+$ + 2 H$_2$O \rightarrow 2 NADH + 2 H$^+$ + O$_2$
BIO NETWORKS

... ARE NETWORKS OF BIOCHEMICAL REACTIONS ...

... NATURALLY EXPRESSIBLE AS PETRI NETS ...

\[2 \text{NAD}^+ + 2 \text{H}_2\text{O} \rightarrow 2 \text{NADH} + 2 \text{H}^+ + \text{O}_2 \]
places -> model variables
- (bio-) chemical compounds
- proteins
- protein conformations
- complexes
- genes, . . . , etc.
. . . in different locations

transitions -> atomic events
- (stoichiometric) chemical reaction
- complexation / decomplexation
- phosphorylation / dephosphorylation
- conformational change
- transport step, . . . , etc.
. . . in different locations
STATE-DEPENDENT RATE FUNCTIONS
ADDING TIME

STATE-DEPENDENT RATE FUNCTIONS

STOCHASTIC RATES

LAMBDA OF EXPONENTIAL WAITING TIME

CTMC

CONTINUOUS RATES

STRENGTH OF CONTINUOUS FLOW

ODEs

-> supported by, e.g., COPASI, Dizzy, ..., Snoopy
FRAMEWORK 2007

QUALITATIVE

time-free

timed, quantitative

STOCHASTIC

discrete state space

CONTINUOUS

continuous state space
QUALITATIVE

STOCHASTIC

time-free

timed, quantitative

CONTINUOUS

discrete state space

continuous state space

abstraction

extension
FRAMEWORK 2007

QUALITATIVE

time-free

abstracted

extension

approximation

STOCHASTIC

discrete state space

approximation

CONTINUOUS

continuous state space

timed, quantitative
FRAMEWORK 2007

- **QUALITATIVE**
 - LTS / PO
 - CTL, LTL

- **STOCHASTIC**
 - CTMC
 - CSL, PLTLc

- **CONTINUOUS**
 - ODEs
 - LTLc

timed, **quantitative**

time-free

approximation

discrete state space

continuous state space
QUALITATIVE

time-free
timed, quantitative

STOCHASTIC

abstraction
extension

approximation

CTMC
CSL, PLTLc

continuous state space
discrete state space

CONTINUOUS

abstraction
extension

approximation

LTS / PO
CTL, LTL

ODEs
LTLc

net reduction, SC, SB,
CPI, CTI, ADT sets
STP, bad siphons, etc.
FrameworK 2010

LTS / PO
CTL, LTL

QUALITATIVE

time-free

abstraction
extension

extension
abstraction

STOCHASTIC

CTMC
CTMC

approximation
approximation

CTMC
CTMC

continous state space

C
ODEs
C

LTLc

ODEs
LTLc

continuous state space

*/
COLOURED FRAMEWORK 2011

LTS / PO
CTL, LTL

QUALITATIVE

COLOURED

COLOURED

STOCHASTIC

CTMC
CTMC
CSL, PLTLc
CSL, PLTLc

approximation
approximation

HYBRID

continuous state space

COLOURED

CONTINUOUS

ODEs
ODEs
LTLc
LTLc

discrete state space

PN & BioModel Engineering

monika.heiner@brunel.ac.uk
KEY IDEA

4x2

MODELS SHARING STRUCTURE

QUANTITATIVE MODEL = QUALITATIVE MODEL

+ RATE FUNCTIONS
 (KINETICS)
Our Toolbox
OUR TOOL BOX

SNOOPY

- modelling and animation/simulation of hierarchical graphs,
 e.g. various Petri net classes, e.g. PN, XPN, SPN, XSPN, CPN, ...
OUR TOOL BOX

- **SNOOPY**
 - modelling and animation/simulation of hierarchical graphs,
 e.g. various Petri net classes, e.g. PN, XPN, SPN, XSPN, CPN, ...

- **S4**
 - standalone, computational steering server
OUR TOOL BOX

- **SNOOPY**
 - modelling and animation/simulation of hierarchical graphs,
 e.g. various Petri net classes, e.g. PN, XPN, SPN, XSPN, CPN, ...

- **S4**
 - standalone, computational steering server

- **CHARLIE**
 - PN, XPN, Time/Timed Petri nets (TPN)
 - mostly standard analysis techniques of Petri net theory
OUR TOOL BOX

- **SNOOPY**
 - modelling and animation/simulation of hierarchical graphs,
 e.g. various Petri net classes, e.g. PN, XPN, SPN, XSPN, CPN, ...

- **S4**
 - standalone, computational steering server

- **CHARLIE**
 - PN, XPN, Time/Timed Petri nets (TPN)
 - mostly standard analysis techniques of Petri net theory

- **MARCIE**
 - PN, XPN, SPN, XSPN, SRN
 - symbolic and simulative model checking
OUR TOOL BOX

- **SNOOPY**
 - Modelling and animation/simulation of hierarchical graphs,
 - E.g. various Petri net classes, e.g. PN, XPN, SPN, XSPN, CPN, ...

- **S4**
 - Standalone, computational steering server

- **CHARLIE**
 - PN, XPN, Time/Timed Petri nets (TPN)
 - Mostly standard analysis techniques of Petri net theory

- **MARCIE**
 - PN, XPN, SPN, XSPN, SRN
 - Symbolic and simulative model checking

- **Patty**
 - Animation via web browser
Our Tool Box

- **SNOOPY**
 - Modelling and animation/simulation of hierarchical graphs,
 e.g. various Petri net classes, e.g. PN, XPN, SPN, XSPN, CPN, ...

- **S4**
 - Standalone, computational steering server

- **CHARLIE**
 - PN, XPN, Time/Timed Petri nets (TPN)
 - Mostly standard analysis techniques of Petri net theory

- **MARCIE**
 - PN, XPN, SPN, XSPN, SRN
 - Symbolic and simulative model checking

- **Patty**
 - Animation via web browser

+ SBML import/export

Export to MATLAB and many other tools
PETRI NETS - THE BIG PROS

- readable & unambiguous
 -> fault avoidant model construction

- locality - causality - concurrency

- compositional, hierarchical notations
 -> logical and macro nodes

- executable
 -> animation, simulation (token game)
- Petri net theory -> model validation
 - P/T-invariants, partial order interpretation of T-invariants,
 conclusions CTI/CPI -> behavioural properties
 - Siphon/Trap Property (STP), reduction rules, . . .
PETRI NETS - THE BIG PROS

- readable & unambiguous
 -> fault avoidant model construction

- locality - causality - concurrency

- compositional, hierarchical notations
 -> logical and macro nodes

- executable
 -> animation, simulation (token game)

- Petri net theory -> model validation
 -> P/T-invariants, partial order interpretation of T-invariants,
 conclusions CTI/CPI -> behavioural properties
 -> Siphon/Trap Property (STP), reduction rules, . . .

- umbrella with unifying power
 -> interpretation in qualitative / stochastic / continuous / hybrid paradigm
T- INVARIANTS

(ELEMENTARY MODES)

(EXTREME PATHWAYS)

(GENERIC PATHWAYS)
T- INVARIANTS, Ex

\[r1: \quad A \rightarrow 2B \]
\[r2: \quad 2A \rightarrow 3C \]
$r_1: \ A \rightarrow 2 \ B$

$r_2: \ 2 \ A \rightarrow 3 \ C$
r1: A → 2 B
r2: 2 A → 3 C
T- INVARIANTS, Ex

\[r1: \quad A \rightarrow 2 \, B \]
\[r2: \quad 2 \, A \rightarrow 3 \, C \]

T-INVARIANT 1

T-INVARIANT 2
INCIDENCE MATRIX C

- **a representation of the net structure**

 $$ C = \begin{bmatrix} p_1 & \ldots & t_j & \ldots & t_m \\ p_1 & & & & \\ p_i & c_{ij} & & & \\ \vdots & & \Delta t_j & & \\ p_n & & & & \end{bmatrix} $$

 where $c_{ij} = (pi, tj) = F(tj, pi) - F(pi, tj) = \Delta t_j(pi)$

 $\Delta t_j = \Delta t_j(*)$

- **matrix entry c_{ij}:**
 token change in place pi by firing of transition tj

- **matrix column Δt_j:**
 vector describing the change of the whole marking by firing of tj

- **side-conditions are neglected**

 ![Diagram of a reaction catalyzed by an enzyme](image)

 - $c_{ij} = 0$
T-INTEGRANTS, BASICS

- Lautenbach, 1973 -> Schuster, 1993

- T-invariant x
 -> integer solution of $Cx = 0, x \neq 0, x \geq 0$

- support of a T-invariant x -> supp(x)
 -> set of transitions involved, i.e. $x(i) \neq 0$

- minimal T-invariants
 -> there is no T-invariant with a smaller support
 -> gcD of all entries is 1

- any T-invariant is a non-negative linear combination of minimal ones
 -> multiplication with a positive integer
 -> addition
 -> Division by gcD
T-invariants = (multi-) sets of transitions = Parikh vector
- zero effect on marking
- reproducing a marking / system state

two interpretations
1. partially ordered transition sequence
 of transitions occurring one after the other
 - substance / signal flow
2. relative transition firing rates
 of transitions occurring permanently & concurrently
 - steady state behaviour

a minimal T-invariant defines a connected subnet
- the T-invariant’s transitions (the support),
 + all their pre- and post-places
 + the arcs in between
- pre-set of support = post-set of support
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Raddy 1993]
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Reddy 1993]
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Reddy 1993]

- INTERPRETATION?
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Reddy 1993] [Heiner 1998]
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Reddy 1993] [Heiner 1998]
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Reddy 1993] [Heiner 1998]
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Reddy 1993]
[Heiner 1998]
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Reddy 1993]
[Heiner 1998]
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Heiner 2009]
Ex1 - Glycolysis and Pentose Phosphate Pathway

[Heiner 2009]
Ex1 - Glycolysis and Pentose Phosphate Pathway
Ex1 - Glycolysis and Pentose Phosphate Pathway
ABOUT THE RELATION
QUALITATIVE VS CONTINUOUS
Ex4 - Hypoxia

[Yu et al. 2007]
Ex4 - HYPOXIA

[HEINER, SRIRAM 2010]
Ex4 - HYPOXIA

![Reaction Network Diagram](Ex4_HYPOXIA.png)
THANKS!
HTTP://WWW-DSSZ.INFORMATIK.TU-COTTBUS.DE