Accelerated Simulation of
Hybrid Biological Models with Quasi-disjoint
Deterministic and Stochastic Subnets

Mostafa Herajy ' and Monika Heiner 2

I Department of Mathematics and Computer Science,
Faculty of Science, Port Said University, Egypt

2 Computer Science Institute,
Brandenburg University of Technology, Cottbus, Germany

Grenoble, October 20th 2016

Outline

Prolog

[)
Introduction A.

M

Proposal N\ W :

G ¢ 5
Algorithms V_/
B Evaluation i .
Conclusions

Prolog

Prolog

We use
Generalised Hybrid
Petri Nets (GHPN) to

m construct and

mrnaR ri4

r4 ri1) | ro r12

m graphically visualise :
[) geneA_A genek@ geneR_A
the models. y

Prolog

GHPN Elements

Places

Transitions

Arcs

GHPN Elements

Places O O

Continuous Discrete

Transitions

Arcs

Prolog

GHPN Elements

Places O O

Continuous Discrete

Transitions

o o1 e =

[-SimStart, 1, SimEnd]

Continuous Stochastic Immediate Deterministic Scheduled

Arcs

Prolog

GHPN Elements

Places O O

Continuous Discrete

Transitions

o o1 e =

[-SimStart, 1, SimEnd]

Continuous Stochastic Immediate Deterministic Scheduled
Arcs
—> ——@ —0 — 09 —>> - »-
Standard Read Inhibitor Equal Reset Modifier

M. Herajy and M. Heiner, NAHS (2012)

Prolog

From Reactions to Petri

Notations
Substrates Reaction Product
gT _______________ e u Species :{Sl,SQ, P}
2 S1452 —— P
o | m Substrates ={S5;, S5}

,,,

m Product ={P}

.
| MassAction (k)

m Rate Constant ={k}

s | m Reaction Rate:

777777777777777 777777777777 MassAction(k;) =
k- S-S,

Prolog

GHPN Example with Immediate Transition

switch_off g

Concentration on place A
o

0 20 A 80 100

. 0 60
switch_on Time (5)

M. Heiner 2016

Prolog

GHPN Example with Stochastic Transition

switch_off

switch_on

M. Heiner 2016

Concentration on place A

0

2000

4000 6000
Time (s)

8000

10000

Introduction

Introduction

m Hybrid simulation (of biological reaction networks)
combines deterministic and stochastic regimes to
execute a model.

m [t can be used as an alternative approach when it is
not possible to perform a pure stochastic simulation.

m [t provides a trade-off between accuracy and efficiency
of model execution.

Introduction

Introduction: How Does It Work?

Repeat the following steps:
m (Re)initialise the ODE solver

m Numerically integrate the system of ODEs until a
stochastic event is to occur

m Find the index of the stochastic reaction to occur

m Fire this stochastic reaction

m Update the propensities of the stochastic reactions

Introduction

Introduction: How Does It Work?

m Crucial for hybrid simulation performance: calculation
of exact time when next stochastic reaction is to occur

m Can be done, e.g., using

t+7
[a(x)dt + log(p) = 0, (1)

where
m X — state vector of the model at time ¢,
m qj — cumulative propensity of stochastic reactions,
m p; — random number generated from U(0, 1).

Haseltine, Rawlings, J. Chem. Phys. (2002)

Introduction

Introduction: How Does It Work?

m Similarly, the index of the next reaction to fire can be
selected as the first index p satisfying

m

S @i (x) > paai(x). (2)

=1

where

= a - propensity of the 4t slow reaction,
m py — random number generated from U(0, 1).

Haseltine, Rawlings, J. Chem. Phys. (2002)
d M. Hei 2016

Introduction

Introduction: a Performance Issue

m Each time a stochastic event takes place, a
discontinuity in the system of ODEs may occur.

m To deal with discontinuities, the ODE solver must be
reinitialised after the firing of each stochastic reaction.

m Frequent reinitialisation of the ODE solver introduces
additional computational overhead.

m We assume a modular design of the ODE solver and
the stochastic simulator;
this requires adaptive step-size ODE solvers, recording
accuracy and history information.

Introduction

Introduction: a Performance Issue

Do we need to accept

all these reinitialisations?

M. Herajy and M. Heiner 2016

Proposal

Our Proposal

To overcome this problem, we classify the set of stochastic

reactions into three groups according to their relation to
the deterministic regime:

reactions with no dependency

reactions with direct dependency — interface reactions
reactions with indirect dependency

Proposal

Completely Independent Reactions

m Such reactions do not share any species with
the reactions in the deterministic regime.

m Also, their substrates and products are not used to
define reaction rates in the deterministic regime.

Completely Independent Reactions: (Example)

The two reactions:

S1+Szk—l>P1
Se+ S, 2 p,

are independent
of one another.

Proposal

Reactions with Direct Dependency

m Such reactions share certain species with
the continuous regime.

m Their substrates and products may be used to define
reaction rates in the deterministic regime.

Reactions with Direct Dependency (Example)

O
S3

The two reactions:

S, + S, B p,
P+ Ss 2 P,

have a direct dependency.

Proposal

Reactions with Indirect Dependency

m Such reactions do not share any species with
the continuous regimes.

m Their substrates and products are used to define
reaction rates in the deterministic regime.

Reactions with Indirect Dependency (Example)

The two reactions:

S, + S, &y p
Sy + S, B p

have an indirect dependency.

Proposal

Our Proposal, Idea 1

Following this classification, we reinitialise the ODE solver
in case of:

m a stochastic reaction with direct dependency fires,

m for some special cases of stochastic reactions with
indirect dependency.

m We use an idea similar to the dependency graph.

Our Proposal, Idea 2

m However, Eq. (1) still requires the reinitialisation of
the ODE solver each time a stochastic event occurs.

m One workaround is to approximate (1):

t+71
/ ag(x)dt + log(p1) =0
t

by
ag(x) - AT +log(p1) =0, (3)

where
m A7 — time difference between occurrence time of the
previous event and the current event,
m p; — random number generated from U(0, 1).

d M. Heiner 2016

1lation o Models

Dependency Graph

m Originally been proposed by Gibson, Bruck (2000)

m Reduces the number of propensity updates
following every reaction firing

m Stores for each reaction the set of other reactions
that will be affected by every occurrence

Algorithms

Algorithm1: Extracting the Dependency
Information

m We assume that the dependency graph of all reactions
is already constructed

m Manipulated species: the set of species that are altered
when a reaction takes place

m E.g., the set of manipulated species for the reaction
Sl+52 k—1>P1 is M = {Sl,SQ,Pl}

M. Herajy and M. Heiner 2016

Algorithms

Algorithm1: Extracting the Dependency

Information (Cont.)

m Input: the sets of slow and fast reactions (G, Gy)

m Output: the set of interface reactions

m Steps:
m Find the intersections of manipulated species for each
pair of reactions (r1 € Gy, r2 € Gy)
m If intersection set is not empty,
mark r1 as an interface reactions

Algorithms

Algorithm1: Extracting the Dependency
Information

Algorithm 1 Finding Interface Reactions
Require: G, the set of slow reactions;
Require: G the set of fast reactions;
1: R* = ¢ {the set of marked interface reactions is initially empty}
2: for each r; in Gs do
3 let S; denotes the set of manipulated species when r; fires;
4 for each s;; in S; do
5: Find the set of other reactions, R;;, that manipulate s;; when they fire;
6
7
8

if Ir; € Ry; and r; € Gy then
Add r; to R*; {Mark r; as an interface reaction}

end if
9: end for
10: end for

11: return R*;

Algorithms

Algorithm 1: Example

| Slow Reactions | M. Species # | Fast Reactions | M. Species
" o5 A (A} re| C+E 2 D | {CDE}

ro AL {A} r| Dy C+E | {C, D, E}
r3 ¢ =B {B} rs| D¢ (D}

T4 B4 ¢ (B}

rs| A+BES B4 C| {A, B,C}

m {r; —ry} — independent reactions

m R* = {r;} — dependent/interface reaction

1 Models

Algorithms

Algorithm 2: Accelerated Hybrid Simulation

m Makes use of the information collected from
Algorithm 1

m Initialises the ODE solver only when the firing
stochastic reaction belongs to the marked list

M. Herajy and M. Heiner 2016

Algorithms

Algorithm 2: Accelerated Hybrid Simulation
(Cont.)

Algorithm 2 Accelerated Hybrid Simulation

Require: G, and Gy: the sets of slow and fast reactions respectively;
Require: R" the set of reactions marked as interface reactions;

1: Initialise the ODE solver with the initial concentration of the variables in Gy;
2: set T = To1a = 0;

3: while we did not reach end simulation time do

4 Generate two random numbers p1 and p2 from the uniform distribution;
5: repeat

6: Numerically integrate the system of ODEs;

7: until a§(x) - (7 — To1a) + log(p1) = 0 {cf., Eq., (5)}

8: Update(a(r:),ap), Vri € Gs,Vr; € Gy : Base(r;) N Manipulated(r;)# ¢;

9: Find the reaction 7, that satisfies (2) using p2;
10: Fire r, and update the system state as well as the current time 7;
11: Update(a(ri), ap), Vri : Base(r;) N Manipulated(r,)# ¢;
12: Set Toia =7
13: if r, € R" then
14: Reinitialise the ODE solver

Algorithms

Algorithm 2: Accelerated Hybrid Simulation
(Cont.)

m [n some cases, reactions with indirect dependency can
cause discontinuity

m For example, when an enzyme value goes from 0 to 1,
or vice versa

m The state of such a species can be monitored for such
behaviour

m The ODE is reinitialised only when a species values
flipping form 0 to 1, or vice versa

Evaluation

Case Studies

We use three case studies to test the proposed method:

Circadian Oscillation
Eukaryotic Cell Cyle
Yeast Cell Cyle

Evaluation

Case Study: Circadian Oscillation

Concentration

Evaluation

Case Study: Circadian Oscillation

geneR_A

Vilar et al., PNAS (2002)
Blatke, Heiner, Marwan, BioModel engineering with Petri nets (2015)

Evaluation

Case Study: Circadian Oscillation

m The model consists of 9 species and 16 reactions.

m The number of generated stochastic events
for both simulators are comparable.

m The accelerated simulation algorithm is about
three times faster than the exact method.

Evaluation

Case Study: Circadian Oscillation

Simulation results of the circadian oscillation model
(single runs):

25000 25000

== =
20000 20000
15000 15000
3 38

10000 10000
5000 5000

o 0

0 50 100 150 200 250 300 350 400) 50 100 150 200 250 300 350 400
time (s) time (s)

exact accelerated

Evaluation

Case Study: Cell Cycle Regulation

m S phase (synthesis)
m G2 gap
m M phase (mitosis)

m G1 gap

M. Herajy and M. Heiner 2016

Evaluation

Case Study: Eukaryotic Cell Cycle

ready_for_check

Accelerated Simulation of Hybrid Biological Models

Evaluation

Case Study: Eukaryotic Cell Cycle

m The model consists of 26 species and 48 reactions.

m The number of generated stochastic events
for both simulators are comparable.

m The accelerated simulation algorithm is about
two times faster than the exact method

Celluar Volume

cell cycle (single runs):

T

200 400 500 00 1000

accelerated

Evaluation

Case Studies: Yeast Cell Cycle

m This hybrid model is based on the stochastic one by
Barik et al., 2010
m The model consists of:

m A set of phosphorylation and dephosphorylation
reactions of many proteins
m Synthesis and degradation of mRNAs

m Phosphorylation and dephosphorylation reactions are
simulated deterministically, and

m Reactions related to mRNAs are simulated
stochastically

Evaluation

Case Study: Yeast Cell Cycle

m We use coloured hybrid Petri nets to construct and
simulate this model.

m The model consists of 60 species and 190 reactions.

m The number of generated stochastic events
for both simulators are comparable.

m The accelerated simulation algorithm is about
10 times faster than the exact method.

Evaluation

Case Study: Yeast Cell Cycle

Simulation results of the yeast cell cycle (single runs):

[Volude ==q1
B %
w0 w0
HE) HE)
3 3
B »
0 o
o .
o 200 w0 w0 w0 o0 o 200 w0 a0 a0 000
time (s) time (s)

exact accelerated

Evaluation

Case Studies: Summary

. . . | Yeast
Criteria/models g 1r.cad1'a n | Bukaryotic Cell

scillation | Cell Cycle

Cycle

species 9 26 60
reactions 16 48 190
stochastic reactions 3 19 19
deterministic reactions 13 29 171
stochastic events (exact) 35,650 780,318 | 112,908
stochastic events (accelerated) | 35,533 776,192 | 112,789
interface reactions 0 8 0
indirect dependent reactions 3 4 15
Run time (exact) (s) 3.8 731 495
Run time (accelerated) (s) 1.278 445 53

d M. Heiner 2016

Models

Conclusions

Implementation

Snoopy

A tool for animating and simulating Petri nets.

Eh

Snoopy Simulation and Steering Server

i ¢ EjE O O =

Heiner et al. Petri nets (2012)
Herajy, Heiner, Petri nets (2014)

Conclusions

Conclusions 1

m We have presented an approach for improving the
performance of hybrid simulation algorithms.

m The suggested improvements will be useful to cope
with the rapid growth of (biological) models.

m For smaller models, the accelerated algorithm is about
three times faster than the exact method.

m For larger models, there is a substantial improvement
in terms of runtime (10 times faster).

Conclusions

Conclusions 2

m This result is due to saving the ODE solver from
repeating the work required to build accuracy and
history information.

m Therefore, as soon as the model size is increased, the
simulator performance is also improved.

Conclusions

Future Work

m Applying the proposed algorithms to more examples.

m [nvestigating dynamic partitioning in combination
with the presented algorithm.

Thank You

	Prolog
	Introduction
	Proposal
	Algorithms
	Evaluation
	Conclusions

