	Algorithms	

Accelerated Simulation of Hybrid Biological Models with Quasi-disjoint Deterministic and Stochastic Subnets

Mostafa Herajy 1 and Monika Heiner 2

¹ Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Egypt

² Computer Science Institute, Brandenburg University of Technology, Cottbus, Germany

Grenoble, October 20th 2016

M. Herajy and M. Heiner 2016

Accelerated Simulation of Hybrid Biological Models

イロト イボト イヨト イヨト

		Algorithms	
Outli	ne		

1 Prolog

2 Introduction

3 Proposal

- 4 Algorithms
- 5 Evaluation

6 Conclusions

э

・ロト ・日ト・ ・ヨト・

Prolog		Algorithms	
Drolog			

We use Generalised Hybrid Petri Nets (\mathcal{GHPN}) to

- construct and
- graphically visualise the models.

Places

Transitions

Arcs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへの

Prolog	Introduction	Proposal	Algorithms	Evaluation	Conclusions
\mathcal{GHP}	${\cal N}$ Elemer	nts			
	Places	0	\bigcirc		
		Continuous	Discrete		

Transitions

Arcs

Prolog			Algorithms	Conclusions
${\cal GHP}$	${\cal N}$ Elemei	nts		

Arcs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

M. Herajy and M. Heiner, NAHS (2012)

M. Herajy and M. Heiner 2016

Accelerated Simulation of Hybrid Biological Models

<ロ> (日) (日) (日) (日) (日)

Prolog		Algorithms	

From Reactions to Petri Nets

Notations

- Species = $\{S_1, S_2, P\}$
- Substrates = $\{S_1, S_2\}$
- Product = $\{P\}$
- Rate Constant = $\{k\}$
- Reaction Rate: $MassAction(k) = k \cdot S_1 \cdot S_2$

M. Herajy and M. Heiner 2016

Accelerated Simulation of Hybrid Biological Models

${\cal GHPN}$ Example with Immediate Transition

M. Herajy and M. Heiner 2016

Accelerated Simulation of Hybrid Biological Models

GHPN Example with Stochastic Transition

(日)

M. Herajy and M. Heiner 2016

Accelerated Simulation of Hybrid Biological Models

э

- Hybrid simulation (of biological reaction networks) combines deterministic and stochastic regimes to execute a model.
- It can be used as an alternative approach when it is not possible to perform a pure stochastic simulation.
- It provides a trade-off between accuracy and efficiency of model execution.

Introduction: How Does It Work?

Repeat the following steps:

- (Re)initialise the ODE solver
- Numerically integrate the system of ODEs until a stochastic event is to occur
- Find the index of the stochastic reaction to occur
- Fire this stochastic reaction
- Update the propensities of the stochastic reactions

→ ∃ →

Introduction: How Does It Work?

Crucial for hybrid simulation performance: calculation of exact time when next stochastic reaction is to occur
Can be done, e.g., using

$$\int_{t}^{t+\tau} a_0^s(\mathbf{x})dt + \log(p_1) = 0, \qquad (1)$$

(日)

where

- **x** state vector of the model at time t,
- a_0^s cumulative propensity of stochastic reactions,
- p_1 random number generated from U(0, 1).

Haseltine, Rawlings, J. Chem. Phys. (2002)

• Similarly, the index of the next reaction to fire can be selected as the first index μ satisfying

$$\sum_{j=1}^{\mu} a_j^s(\mathbf{x}) > p_2 a_0^s(\mathbf{x}) \,, \tag{2}$$

(日)

where

- a_j^s propensity of the j^{th} slow reaction,
- p_2 random number generated from U(0, 1).

Haseltine, Rawlings, J. Chem. Phys. (2002)

M. Herajy and M. Heiner 2016 Accelerated Simulation of Hybrid Biological Models

Introduction: a Performance Issue

- Each time a stochastic event takes place, a discontinuity in the system of ODEs may occur.
- To deal with discontinuities, the ODE solver must be reinitialised after the firing of each stochastic reaction.
- Frequent reinitialisation of the ODE solver introduces additional computational overhead.
- We assume a modular design of the ODE solver and the stochastic simulator; this requires adaptive step-size ODE solvers, recording

accuracy and history information.

→ Ξ →

Introduction: a Performance Issue

Do we need to accept all these reinitialisations?

M. Herajy and M. Heiner 2016 Accelerated Simulation of Hybrid Biological Models < 同 ▶

→

To overcome this problem, we classify the set of stochastic reactions into three groups according to their relation to the deterministic regime:

- **1** reactions with no dependency
- **2** reactions with direct dependency interface reactions
- **3** reactions with indirect dependency

< ≣ >

Completely Independent Reactions

- Such reactions do not share any species with the reactions in the deterministic regime.
- Also, their substrates and products are not used to define reaction rates in the deterministic regime.

Completely Independent Reactions: (Example)

The two reactions:

$$S_1 + S_2 \xrightarrow{k_1} P_1$$
$$S_3 + S_4 \xrightarrow{k_2} P_2$$

are independent of one another.

< 17 >

M. Herajy and M. Heiner 2016 Accelerated Simulation of Hybrid Biological Models

Reactions with Direct Dependency

- Such reactions share certain species with the continuous regime.
- Their substrates and products may be used to define reaction rates in the deterministic regime.

→ Ξ →

Reactions with Direct Dependency (Example)

The two reactions:

$$S_1 + S_2 \xrightarrow{k_1} P_1$$
$$P_1 + S_3 \xrightarrow{k_2} P_2$$

have a direct dependency.

< 同 ▶

M. Herajy and M. Heiner 2016

Accelerated Simulation of Hybrid Biological Models

Reactions with Indirect Dependency

- Such reactions do not share any species with the continuous regimes.
- Their substrates and products are used to define reaction rates in the deterministic regime.

→ Ξ →

Reactions with Indirect Dependency (Example)

The two reactions:

$$S_1 + S_2 \xrightarrow{k_1} P_1$$
$$S_3 + S_4 \xrightarrow{k_2 * P_1} P_2$$

have an indirect dependency.

M. Herajy and M. Heiner 2016 Accelerated Simulation of Hybrid Biological Models

Following this classification, we reinitialise the ODE solver in case of:

- a stochastic reaction with direct dependency fires,
- for some special cases of stochastic reactions with indirect dependency.
- We use an idea similar to the dependency graph.

▲ 同 ▶ → ● ▶

However, Eq. (1) still requires the reinitialisation of the ODE solver each time a stochastic event occurs.
One workaround is to approximate (1):

$$\int_{t}^{t+\tau} a_0^s(\mathbf{x}) dt + \log(p_1) = 0$$

by

$$a_0^s(\mathbf{x}) \cdot \Delta \tau + \log(p_1) = 0, \qquad (3)$$

where

- $\Delta \tau$ time difference between occurrence time of the previous event and the current event,
- p_1 random number generated from U(0, 1).

M. Herajy and M. Heiner 2016 Accelerated Simulation of Hybrid Biological Models

- Originally been proposed by Gibson, Bruck (2000)
- Reduces the number of propensity updates following every reaction firing
- Stores for each reaction the set of other reactions that will be affected by every occurrence

- We assume that the dependency graph of all reactions is already constructed
- Manipulated species: the set of species that are altered when a reaction takes place
- E.g., the set of manipulated species for the reaction $S_1 + S_2 \xrightarrow{k_1} P_1$ is $M = \{S_1, S_2, P_1\}$

Accelerated Simulation of Hybrid Biological Models

イロト イボト イヨト イヨト

Algorithm1: Extracting the Dependency Information (Cont.)

- Input: the sets of slow and fast reactions (G_s, G_f)
- Output: the set of interface reactions
- Steps:
 - Find the intersections of manipulated species for each pair of reactions $(r_1 \in G_s, r_2 \in G_f)$
 - If intersection set is not empty, mark r₁ as an interface reactions

イロト イポト イヨト イヨ

Algorithm1: Extracting the Dependency Information

Algorithm 1 Finding Interface Reactions

Require: G_s the set of slow reactions;

Require: G_f the set of fast reactions;

- 1: $R^* = \phi$ {the set of marked interface reactions is initially empty}
- 2: for each r_i in G_s do
- 3: let S_i denotes the set of manipulated species when r_i fires;
- 4: for each s_{ij} in S_i do
- 5: Find the set of other reactions, R_{ij} , that manipulate s_{ij} when they fire;
- 6: **if** $\exists r_j \in R_{ij}$ and $r_j \in G_f$ then
- 7: Add r_i to R^* ; {Mark r_i as an interface reaction}
- 8: end if
- 9: end for
- 10: end for
- 11: return R^* ;

	Algorithms	

Algorithm 1: Example

#	Slow Reactions	M. Species
r_1	$\phi \xrightarrow{s} A$	$\{A\}$
r_2	$A \xrightarrow{d} \phi$	$\{A\}$
r_3	$\phi \xrightarrow{s} B$	$\{B\}$
r_4	$B \xrightarrow{d} \phi$	{B}
r_5	$A + B \xrightarrow{k_1} B + C$	$\{A, B, C\}$

#	Fast Reactions	M. Species
r_6	$C + E \xrightarrow{k_2} D$	$\{C,D,E\}$
r_7	$D \xrightarrow{k_3} C + E$	$\{C, D, E\}$
r_8	$D \xrightarrow{dd} \phi$	{D}

• $\{r_1 - r_4\}$ – independent reactions

• $R^* = \{r_5\}$ – dependent/interface reaction

M. Herajy and M. Heiner 2016

Accelerated Simulation of Hybrid Biological Models

э

Algorithm 2: Accelerated Hybrid Simulation

- Makes use of the information collected from Algorithm 1
- Initialises the ODE solver only when the firing stochastic reaction belongs to the marked list

▲ □ ▶ ▲ □ ▶

Algorithm 2: Accelerated Hybrid Simulation (Cont.)

Algorithm 2 Accelerated Hybrid Simulation

Require: G_s and G_f : the sets of slow and fast reactions respectively;

Require: R^* the set of reactions marked as interface reactions;

1: Initialise the ODE solver with the initial concentration of the variables in G_f ;

2: set
$$\tau = \tau_{old} = 0$$
;

- 3: while we did not reach end simulation time ${\bf do}$
- 4: Generate two random numbers p_1 and p_2 from the uniform distribution;

5: repeat

- 6: Numerically integrate the system of ODEs;
- 7: **until** $a_0^s(\mathbf{x}) \cdot (\tau \tau_{old}) + log(p_1) = 0$ {cf., Eq., (5)}
- 8: **Update** $(a(r_i), a_0^s), \forall r_i \in G_s, \forall r_j \in G_f : \mathbf{Base}(r_i) \cap \mathbf{Manipulated}(r_j) \neq \phi;$
- 9: Find the reaction r_{μ} that satisfies (2) using p_2 ;
- 10: Fire r_{μ} and update the system state as well as the current time τ ;
- 11: **Update** $(a(r_i), a_0^s), \forall r_i : \mathbf{Base}(r_i) \cap \mathbf{Manipulated}(r_\mu) \neq \phi;$
- 12: Set $\tau_{old} = \tau$
- 13: **if** $r_{\mu} \in R^*$ **then**
- 14: Reinitialise the ODE solver

M. Herajy and M. Heiner 2016

Accelerated Simulation of Hybrid Biological Models

<ロ> (日) (日) (日) (日) (日)

- In some cases, reactions with indirect dependency can cause discontinuity
- For example, when an enzyme value goes from 0 to 1, or vice versa
- The state of such a species can be monitored for such behaviour
- The ODE is reinitialised only when a species values flipping form 0 to 1, or vice versa

イロト イボト イヨト イヨト

We use three case studies to test the proposed method:

- **1** Circadian Oscillation
- 2 Eukaryotic Cell Cyle
- 3 Yeast Cell Cyle

э

・日・ ・ヨ・ ・

Case Study: Circadian Oscillation

Accelerated Simulation of Hybrid Biological Models

Case Study: Circadian Oscillation

Vilar et al., PNAS (2002)

Blätke, Heiner, Marwan, BioModel engineering with Petri nets (2015) < 🗄 + 👍 + 🚊 - 🖓 Q 🖓

M. Herajy and M. Heiner 2016 Accelerated Simulation of Hybrid Biological Models 32/47

Case Study: Circadian Oscillation

- The model consists of 9 species and 16 reactions.
- The number of generated stochastic events for both simulators are comparable.
- The accelerated simulation algorithm is about three times faster than the exact method.

< ∃ >

Simulation results of the circadian oscillation model (single runs):

M. Herajy and M. Heiner 2016 Accelerated Simulation of Hybrid Biological Models

Case Study: Cell Cycle Regulation

- S phase (synthesis)
- G2 gap
- M phase (mitosis)
- G1 gap

Case Study: Eukaryotic Cell Cycle

Herajy, Schwarick, Heiner, ToPNoC (2013)

M. Herajy and M. Heiner 2016

Accelerated Simulation of Hybrid Biological Models

- The model consists of 26 species and 48 reactions.
- The number of generated stochastic events for both simulators are comparable.
- The accelerated simulation algorithm is about two times faster than the exact method

< ∃ >

Case Study: Eukaryotic Cell Cycle

M. Herajy and M. Heiner 2016 Accelerated Simulation of Hybrid Biological Models

- This hybrid model is based on the stochastic one by Barik et al., 2010
- The model consists of:
 - A set of phosphorylation and dephosphorylation reactions of many proteins
 - Synthesis and degradation of mRNAs
- Phosphorylation and dephosphorylation reactions are simulated deterministically, and
- Reactions related to mRNAs are simulated stochastically

▲ 同 ▶ ▲ 国 ▶ ▲ 国

- We use coloured hybrid Petri nets to construct and simulate this model.
- The model consists of 60 species and 190 reactions.
- The number of generated stochastic events for both simulators are comparable.
- The accelerated simulation algorithm is about
 10 times faster than the exact method.

< /□ > < □ >

Simulation results of the yeast cell cycle (single runs):

M. Herajy and M. Heiner 2016 Accelerated Simulation of Hybrid Biological Models < 一型 >

	Algorithms	Evaluation	

Case Studies: Summary

Criteria/models	Circadian Oscillation	Eukaryotic Cell Cycle	Yeast Cell Cycle
# species	9	26	60
# reactions	16	48	190
# stochastic reactions	3	19	19
# deterministic reactions	13	29	171
# stochastic events (exact)	$35,\!650$	780,318	112,908
# stochastic events (accelerated)	$35{,}533$	776,192	112,789
# interface reactions	0	8	0
# indirect dependent reactions	3	4	15
Run time (exact) (s)	3.8	731	495
Run time (accelerated) (s)	1.278	445	53

Accelerated Simulation of Hybrid Biological Models

ъ

<ロ> (日) (日) (日) (日) (日)

Implementation

A tool for animating and simulating Petri nets.

 S^4

Snoopy Simulation and Steering Server

Heiner et al. Petri nets (2012) Herajy, Heiner, Petri nets (2014)

M. Herajy and M. Heiner 2016 Accelerated Simulation of Hybrid Biological Models

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● 目 ● のへで

43 / 47

- We have presented an approach for improving the performance of hybrid simulation algorithms.
- The suggested improvements will be useful to cope with the rapid growth of (biological) models.
- For smaller models, the accelerated algorithm is about three times faster than the exact method.
- For larger models, there is a substantial improvement in terms of runtime (10 times faster).

→ ∃ →

- This result is due to saving the ODE solver from repeating the work required to build accuracy and history information.
- Therefore, as soon as the model size is increased, the simulator performance is also improved.

< E.

- Applying the proposed algorithms to more examples.
- Investigating dynamic partitioning in combination with the presented algorithm.

▲ □ ▶ ▲ □ ▶

	Algorithms	Conclusions

Thank You

M. Herajy and M. Heiner 2016 Accelerated Simulation of Hybrid Biological Models ▲ロト ▲母ト ▲ヨト ▲ヨト 三ヨー のへで

47 / 47