Prologu	e The Problem	Our Approach	Evaluation	Conclusions
	An Improved Sir	nulation of Hybrid	Biological Models	1

An Improved Simulation of Hybrid Biological Models with many stochastic events and quasi-disjoint subnets

Mostafa Herajy 1 and Monika Heiner 2

¹ Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Egypt

 2 Computer Science Institute, Faculty 1 Brandenburg University of Technology, Cottbus, Germany

Gothenburg, 10 December 2018

	The Problem	Our Approach		
Outline				
1 Prologue	1		M M	1 Y

3 Our Approach

4 Evaluation

5 Conclusions

Time

Prologue	The Problem	Our Approach		
Prol	ogue		1 224 225	
		G	Cucentration	≛> हे २ ५०
Therajy/Heiner - W			0/54	
Improved hybrid si	mulation of biological models		2 / 54	

Prologue	The Problem	Our Approach	
Prologue			

We use Generalised Hybrid Petri Nets (\mathcal{GHPN}) to

- construct and
- graphically visualise

our models.

But, our approach can be applied to any representation of (biochemical reaction) networks.

Prologue	The Problem	Our Approach	
GHPN	example		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

\mathcal{GHPN} example with immediate transitions

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

5/54

< 行

\mathcal{GHPN} example with immediate transitions

Herajy/Heiner - WSC 2018

Improved hybrid simulation of biological models

6/54

< 行

\mathcal{GHPN} example with immediate transitions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

\mathcal{GHPN} example with stochastic transitions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Herajy/Heiner - WSC 2018

Improved hybrid simulation of biological models

Prologue	The Problem	Our Approach	

From reaction to Petri net

notations

species ={
$$S_1, S_2, P$$
}

• substrates ={
$$S_1, S_2$$
}

- products ={P}
- rate constants ={k}
- reaction rate: $MassAction(k) = k \cdot S_1 \cdot S_2$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

Reaction network - example - cartoon

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

Reaction network - example - Petri net

Blätke, Heiner & Marwan, BioModel Engineering with Petri Nets, Elsevier (2015) 🛛 🖙 🗠 🗟 🖓 🔍 🔿

Herajy/Heiner - WSC 2018	
Improved hybrid simulation of biological models	11 / 54

Our Approach

The Problem

< □ > < 凸

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

	The Problem	Our Approach	
The Prol	blem		

Hybrid simulation (of biological reaction networks)

- combines deterministic and stochastic regime;
- used as an alternative approach when
 - pure stochastic simulation is too expensive,
 - pure deterministic simulation neglects inherently discrete and/or stochastic effects;
- provides a trade-off between accuracy and efficiency.

Hybrid simulation: How does it work?

repeat the following steps:

- (re)initialise the ODE solver
- numerically integrate the system of ODEs until a stochastic event is to occur
- find the index of the stochastic reaction to occur
- \blacksquare fire this stochastic reaction
- update the propensities of the stochastic reactions

Hybrid simulation: How does it work?

repeat the following steps:

- (re)initialise the ODE solver
- numerically integrate the system of ODEs until a stochastic event is to occur
- find the index of the stochastic reaction to occur
- \blacksquare fire this stochastic reaction
- update the propensities of the stochastic reactions

Hybrid simulation: How does it work?

repeat the following steps:

- (re)initialise the ODE solver
- numerically integrate the system of ODEs until a stochastic event is to occur → jump equation
- \blacksquare find the index of the stochastic reaction to occur
- \blacksquare fire this stochastic reaction
- update the propensities of the stochastic reactions

Hybrid simulation: two performance issues

Additional computational overhead caused by

1 jump equation

- to decide when to go to the stochastic regime
- needs to be done during deterministic simulation
- decision depends on propensities of stochastic transitions
- **2** re-initialisation of ODE solver
 - when coming back from the stochastic regime discontinuities may occur
 - may be rather frequent
 - expensive for multiple step-size ODE solvers recording accuracy and history information

Our Approach

Our Approach

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

Prologue	I ne Problem	Our Approach	Evaluation	
A brief hist	ory of			
	Stochastic PN (SPN) CTMC	Continuous PN (CPN) →> ODEs	Hybrid PN (HPN) → CTMC + ODEs	

19/54

▲ロト ▲御ト ▲注ト ▲注ト

æ

Prologue	The Problem	Our Approach	Evaluation	Conclusions
A brief his	tory of			
	Stochastic PN (SPN) CTMC \$ SSA (Gillespie 1977)	Continuous PN (CPN) → ODEs ↓ CVODE library	Hybrid PN (HPN) CTMC + ODEs exact (Haseltine, Rawlings 2002)	

20/54

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Prolo	gue The F	Problem (Our Approach	Evaluation	
А	brief history o	f			

21 / 54

イロト イヨト イヨト イヨト

æ

	The Problem	Our Approach	Conclusions
A brief h	istory of		

(日) (四) (日) (日) (日)

æ

	The Problem	Our Approach	
A brief h	listory of		

.

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models イロト イヨト イヨト イヨト

臣

	The Problem	Our Approach	
A brief h	istory of		

イロト イヨト イヨト イヨト

æ

Herajy/Heiner - WSC 2018

Improved hybrid simulation of biological models

Structural analysis - interface transitions

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models ・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへぐ

27/54

Structural analysis - interface transitions

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

Structural analysis - interface places

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

28 / 54

< 行

Structural analysis - interface places

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

29 / 54

< 行

Our Approach

Structural analysis - monitored places

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

Our Approach

Evaluation

Conclusions

Structural analysis - monitored places

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

The Problem	Our Approach	

Structural analysis - summary

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

The Problem	Our Approach	

Structural analysis - summary

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

Structural analysis - terminology

• interface transitions, direct dependencies \rightarrow ODEs initialisation

- stochastic transitions
- sharing pre/post-places with continuous transitions
- interface places, indirect dependencies \rightarrow ODEs initialisation
 - stochastic places
 - side conditions of continuous transitions
- \blacksquare monitored places \rightarrow jump equation
 - continuous places
 - pre-places of stochastic transitions

Structural analysis - summary

■ done only once

during initialisation of hybrid simulation

■ speed-up

depends on interactions between stochastic and continuous model parts

preserves accuracy

accuracy of accelerated HRSSA = accuracy of HRRSA

• immediate transitions

often stand for rare events, thus not considered (so far)

Pro	logue

Our Approach

Evaluation

< P

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

	The Problem	Our Approach	Evaluation	
Case Stu	ıdies			

We use three case studies to test or approach:

- Calcium model (coloured GHPN) Ismail, Herajy & Heiner, ARSBM (2018), in print
- Eukaryotic cell cycle (*GHPN*)
 Herajy, Schwarick & Heiner, ToPNoC (2013)
- Yeast cell cycle (coloured GHPN)
 Herajy, Liu & Heiner, J. Nonlinear Analysis: Hybrid Systems (2018)

Case study: Calcium model - cartoon

Case study: Calcium model - coloured \mathcal{GHPN}

Ismail, Herajy & Heiner, ARSBM (2018)

Herajy/Heiner - WSC 2018

Improved hybrid simulation of biological models

39 / 54

< 行

- ∢ ≣ →

- 10,252 species (places) generated out of 16 coloured places discrete: 251, continuous: 10001
- 57,401 reactions (transitions) generated out of 40 transitions stochastic + immediate: 650 + 50, continuous: 56701
- structural analysis
 - interface transitions: 0
 - interface places: 0 (opChCounter, modified by immediate transitions)
 - monitored places: 1 (clCaC)
- \blacksquare accelerated HRSSA about two times faster than exact simulation

Case study: Calcium model - 2D trace

Simulation results, example:

Herajy/Heiner - WSC 2018

Improved hybrid simulation of biological models

Our Approach

Case studies: cell cycle regulation

- S phase (synthesis)
- ∎ G2 gap
- M phase (mitosis)
- G1 gap

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

Case study: Eukaryotic cell cycle - \mathcal{GHPN}

Herajy, Schwarick & Heiner, ToPNoC (2013)

Herajy/Heiner - WSC 2018

Improved hybrid simulation of biological models

Case study: Eukaryotic cell cycle - model size

- 26 species (places) discrete: 14, continuous: 12
- 51 reactions (transitions)
 stochastic + immediate: 20 + 3, continuous: 28
- structural analysis
 - interface transitions: 8
 - interface places: 1
 - monitored places: 3

• accelerated HRSSA about five times faster than exact simulation

Cellular volume - simulation results, single runs:

Improved hybrid simulation of biological models

Case study: Yeast cell cycle - coloured GHPN

Herajy, Liu & Heiner, NAHS (2018)

Herajy/Heiner - WSC 2018

Improved hybrid simulation of biological models

- 62 species (places) generated out of 23 coloured places discrete: 13, continuous: 49
- 194 reactions (transitions) generated out of 62 coloured transitions stochastic + immediate: 22 + 3, continuous: 169
- structural analysis
 - interface transitions: 0
 - interface places: 10
 - monitored places: 2

■ accelerated HRSSA about six times faster than exact simulation

Case study: Yeast cell cycle - traces

Cellular volume - simulation results, single runs:

Improved hybrid simulation of biological models

The Problem	Our Approach	Evaluation	

Case studies: summary

Models/ Algorithms	Haseltine	Accelerated	HRSSA	Accelerated	Simulation
	&Rawlings			HRSSA	Time
Yeast Cell Cycle	984.5	423	435.2	163.3	10,000 min.
Eukaryotic Cell Cycle	780	276.2	240	164.2	1,000 min.
Calcium model	22,620	14,460	30,980	10,800	10 sec.

For each case study, the number of stochastic events generated by the four algorithms are comparable.

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models < □ > < //>
</

æ

Our Approach

Conclusions

< 🗗

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

Implementation - tools supporting \mathcal{GHPN}

■ Snoopy (2010) - GUI tool for design and simulation of Petri nets

 \blacksquare S4 (2014) - Snoopy Simulation and Steering Server

Spike (2018) - CLI tool for simulation of Petri nets, using config scripts

All available at http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Software

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models

51 / 54

	The Problem	Our Approach	Conclusions
Conclusions			

- We have presented an approach for improving the performance of hybrid simulation algorithms \rightarrow accelerated HRSSA
 - \blacksquare exploiting structural knowledge.
- The improvements
 - minimise the work done by the jump equation,
 - minimise the re-initialisation of the ODEs simulation,
 - see paper for details.
- The suggested improvements will be useful to cope with the rapid growth of (biological) models.

	The Problem	Our Approach	Conclusions
Future wo	ork		

- Extend structural analysis to immediate transitions (optional).
- Better understand why performance gain may depend on the chosen ODEs solver.
- User guidance to find a partitioning minimising the interface between the stochastic and deterministic subnet.
- Investigating dynamic partitioning in combination with accelerated HRSSA.
- Performance comparison for more case studies (using Spike).

Any questions?

Herajy/Heiner - WSC 2018 Improved hybrid simulation of biological models