BTU CotTBUS, PHD WORKSHOP JuLY 2017 dependabillty engineering

DEPENDABLE SOFTWARE
FOR EMBEDDED SYSTEMS

MONIKA HEINER

BTU Cottbus
Computer Science Institute
Data Structures & Software Dependability

monika.heiner(at)b-tu.de July 2017

PROLOGU E dependability engineering
U mynewcar! ~ — ——
NS 2
ESP uscCcC
[0 mynew BOOP ASPECT
software CORE TL ADTOOP VDM++
toolkit ? SAD HOL JSD LOTOS
MASCOT
RBD prp ccs cspva'g\g
FTA sA [
NVP (Il Re s

MTBF MTTF MTTR

monika.heiner(at)b-tu.de July 2017

DEPENDABLE SOFTWARE - ALLIGATORS dependability engineering

J There is no such thing
as a complete task description.

[J Swsystems tend to be (very) large and
inherently complex systems.

-> mastering the complexity?

But, small system’s techniques
can not be scaled up easily.

[J Large systems must be developed by
large teams.

-> communication / organization overhead
But, many programmers tend to be lonely

Sw systems are abstract, i.e. have no
physical form.

->

->

no constraints
by manufacturing processes or
by materials governed by physical laws

software engineering differs from
other engineering disciplines

But, human skills in abstract reasoning are

limited.

Sw does not grow old.

->

->

no natural die out of over-aged sw
sw cemetery

But, “sw mammoths” keep us busy.

workers.
monika.heiner(at)b-tu.de July 2017
OVERVI Ew dependability engineering
U dependability SOFTWARE DEPENDABILITY
taxonomy development phase operation phase
J methods I I
to improve FAULT AVOIDANCE FAULT TOLERANCE
dependability fault prevention — fault masking
-fault removal - defensive
“manuelly - diversity
- computer-aided validation —fault recovery

-animation / simulation / testing

-context checking (static analysis)

consistency checking (verification)

-> model checking

monika.heiner(at)b-tu.de

July 2017

STATE O F TH E A RT dependability engineering

O natural fault rate of seasoned programmers -
about 1-3 % of produced program lines
0 undecidability of basic questions in sw validation
e program termination
« equivalence of programs Murphy’s law:
q prog There is always cleanroom
 program verification still another fault. approach
O validation = testing
0 testing portion of total sw production effort
-> standard system: =50 %
-> extreme availability demands: = 80 %
monika.heiner(at)b-tu.de July 2017
LlMlTATlONS OF TEST'NG dependability engineering
U “Testipg means the executionofapro- | o haustive testing impossible
gram in order to find bugs.” [Myers 79] o
-> Atestrun is called successful,) i" ::/gllrigr?g;ss
if it discovers unknown bugs, .
else unsuccessful. e allinvalid inputs
-> robustness, security, reliability, . . .
0 “Program testing can be used * state-preserving software (OS/IS):
to show the presence of bugs, a (trans-) action depends on
but never to show their absence !” its predecessors
[Dijkstra 72) -> all possible state sequences
[J testingis an inherently destructive

task U systematic testing
of concurrent programs
is much more complicated than
of sequential ones

-> most programmers unable
to test own programs

monika.heiner(at)b-tu.de July 2017

TESTING OF CONCURRENT SOFTWARE dependabilty engineering

[l state space explosion,
worst-case: product of the sequential state spaces

J PROBE EFFECT

« system exhibits in test mode

other (less) behavior than in standard mode (PN T - TIME)
-> test means (debugger) g TPN
affect timing behavior
g prop(pn) <1+|> prop(tpn)
e result: masking of certain types of bugs:
DSt (pn) -> not DSt (tpn) RG (pn) O RG (tpn)
live(pn) -> not live (tpn) _
not BND (pn) -> BND (tpn)

O non-deterministic behavior,
-> pn: time-dependent dynamic conflicts

[J dedicated testing techniques to guarantee reproducibility,
e. g. Instant Replay

monika.heiner(at)b-tu.de July 2017

MODEL_BASED SYSTEM VAL IDAT'ON dependability engineering

J general _
principle modelling

ﬁ
J modelling

= abstraction

[0 analysis
= exhaustive
exploration analysis

[l (amount of)

analysis

techniques

depend on conclusions

model type system — model

properties properties

monika.heiner(at)b-tu.de July 2017

MODEL-BASED SYSTEM VALIDATION

dependability engineering

d tool ' '
process an 001s C controller) Gnvironme@
DFG project,

PLC’s ' ! —
dell i
(’(T:‘gm%"'gr modelling W

[l dedicated

technical language /—‘_\ /_‘
for reqUirement spec control environment
model model

[l error message
= inconsistency between
system model &
requirement spec

composition

[0 wverification methods ‘

-> toolkit system

safety
requirements

functional
requirements

A
temporal
logic

1

{ set of
temporal

model
LA

verification methods

errors /

inconsistencies

formulae

monika.heiner(at)b-tu.de

MODEL-BASED SYSTEM VALIDATION

July 2017

dependability engineering

[J objective -

reuse of
certified REAL
components PROGRAM

SAFETY
REQUIREMENTS DREAM

PROGRAM

\

J
/4

FUNCTIONAL
REQUIREMENTS

~N—2>

monika.heiner(at)b-tu.de

July 2017

MODEL-BASED SYSTEM VALIDATION dependability engineering

0 model MODEL CLASSES
classes I
0 analysis |
methods | ITATIVE MODELS QUANTITATIVE MODELS
[0 analysis
objectives
context checking — NON-STOCHASTIC — worst-case
MODELS evaluation
verification by I
model checking performance
MODELS
reliability
prediction
monika.heiner(at)b-tu.de July 2017
STATE SPACE EXPLOSION, POSSIBLE ANSWERS dependability engineering
BASE CASE TECHNIQUES ALTERNATIVES ANALYSIS METHODS
[0 compositional methods [0 structural analysis
-> simple module interfaces -> structural properties, reduction
00 abstraction by ignoring some state D Integer Linear Programming
information
-> conservative approximation [0 compressed state space representations
-> symbolic model checking (OxDD)
ii U lazy state space construction
PROOF ENGINEERING -> stubborn sets, sleep sets

[l alternative state spaces
(partial order representations)
-> finite prefix of branching process
-> concurrent automaton

monika.heiner(at)b-tu.de July 2017

CASE STUDY - PRODUCTION CELL

dependability engineering

deposit belt (belt 2)
O O
_
travelling crane — arm 2
| i |

robot k J
.
press

]

E:Ei arm 1 14 sensors

feed belt (belt 1) 34 commands

elevating rotary table

monika.heiner(at)b-tu.de July 2017

CASE STUDY - DINING PHILOSOPHERS

dependability engineering

BDD ANALYSIS RESULT, PHIL1000:

Number of places/marked places/transitions: 7000/2000/5000

Number of states: ca. 1.1 * 10e667

1137517608656205162806720354362767684058541876947800011092858232169918\\
1599595881220313326411206909717907134074139603793701320514129462357710\\
2442895227384242418853247239522943007188808619270527555972033293948691\\
3344982712874090358789533181711372863591957907236895570937383074225421\\
4932997350559348711208726085116502627818524644762991281238722816835426\\
4390437022222227167126998740049615901200930144970216630268925118631696\\
7921927977564308540767556777224220660450294623534355683154921949034887\\
4138935108726115227535084646719457353408471086965332494805497753382942\\
1717811011687720510211541690039211766279956422929032376885414750385275\\
51248819240105363652551190474777411874

Time to compute P-Invariants: 45885.66 sec

Number of P-Invariants: 3000

Time to compute compact coding: 385.59 sec

Number of Variables: 4000

Time: 3285.73 sec ca. 54.75’

monika.heiner(at)b-tu.de July 2017

SUMMARY - SOFTWARE VALIDATION

dependability engineering

[J wvalidation can only be as good as 0

the requirement specification
-> readable <-> unambiguous
-> complete <-> limited size

[J validation is extremely 0

time and resource consuming
-> ’external’ quality pressure ?

[J sophisticated validation 0

is not manageable without
theory & tool support

validation needs
knowledgeable professionals

-> study / job specialization
-> profession of “software validator”

validation is no substitute for thinking

There is no such thing as
a fault-free program !

-> sufficient dependability
for a given user profile

monika.heiner(at)b-tu.de

ANOTHER SUMMARY - SOME DOUBTS

July 2017

dependability engineering

b S

bei Thwew ler ne
\\o(b Atanflenn

weJ‘-QVb‘i“‘?'l

| .lc[« wage TV bezrwefelu \
Aa o wich o wo ich

monika.heiner(at)b-tu.de

July 2017

FAULT TOLERANCE

dependability engineering

[0 International Standard IEC 61508
Functional safety of
electrical/electronic/programmable
electronic safety-related systems

[0 part7
Overview of techniques & measures,
first edition August 2002

U AnnexC
Overview of techniques and meas-
ures for achieving software safety
integrity

[J C.2 Requirements and detailed design
-> C.2.5 Defensive programming

[l C.3 Architecture design

-> C.3.1 Fault detection and diagnosis

-> C.3.2 Error detecting and correcting codes
-> C.3.3 Failure assertion programming

-> C.3.4 Safety bag

-> C.3.5 Software diversity

-> C.3.6 Recovery block

-> C.3.7 Backward recovery

-> C.3.8 Forward recovery

-> C.3.9 Re-try fault recovery mechanisms
-> C.3.10 Memorising executed cases

-> C.3.11 Graceful degradation

-> C.3.12 Atrtificial intelligence fault correction
-> C.3.13 Dynamic reconfiguration

monika.heiner(at)b-tu.de

FAULT TOLERANCE - DEFENSIVE SOFTWARE

July 2017

dependability engineering

MEMORISING
EXECUTED CASES

[l to prevent
the execution of
un-known paths

[l only tested paths
are reliable paths

[0 requires
excessive testing

finish
testin

tested executable

current

program source

instrumentation
compilation

() executable

test data
[] testing| |

tested paths development phase

operation phase

current
path

monika.heiner(at)b-tu.de

July 2017

FAULT TOLERANCE - SOFTWARE DIVERSITY dependabillty engineering

N VERSION
PROGRAMMING ~

[l parallel execution (Ova_start
of n program versions

[l followed by

majority test
. . ' v2_end v3_end
U higher abstraction level,
transitions: . Ve _ votor
-> program versions voting
-> voting algorithm voting result
all unequal

O success Q fail

monika.heiner(at)b-tu.de July 2017

FAULT TOLERANCE - SOFTWARE DIVERSITY dependabillty engineering

RECOVERY BLOCK
SCHEME

(1 alternative execution
of n program versions

[1 each followed by
acceptance test

U high-level Petri net

reset to checkpoint;
\ i++ /

'

M
O success O fail

monika.heiner(at)b-tu.de July 2017

SUMMARY - FAULT TOLERANCE

dependability engineering

0

fault tolerance allows basically
higher system reliability
than components’ reliability

software fault tolerance
= redundancy + DIVERSITY

(diverse) fault tolerance is extremely
expensive
-> development & operation phase
-> time & human/hardware resources
-> what is more expensive:

thorough validation or fault tolerance ?
fault tolerance = increased complexity
-> complexity <-> fault avoidance

-> fault tolerance <->
reuse of trustworthy components

-> advanced software engineering skills

fault tolerance is
no substitute for fault avoidance

fault tolerance is
no substitute for thinking

tailored amount of fault tolerance
requires
sound software reliability measures

Think twice
before using fault tolerance !

Look twice
for suitable module sizes !

monika.heiner(at)b-tu.de

ANOTHER SUMMARY - BEYOND THE LIMIT

July 2017

dependability engineering

éugar Bowl Trail
Ends Here

Beyond This Point Y
& id Mountain

monika.heiner(at)b-tu.de

July 2017

EPILOGUE dependability engineering

0 Model-based software validation
- waste of money ?

0 Fault-tolerant software
- just another way to waste money ?

0 Dependable software
- an unrealistic dream or just a reality far away ?

monika.heiner(at)b-tu.de July 2017

