
dependability engineering

 monika.heiner(at)b-tu.de July 2017

BTU CBTU CBTU CBTU COOOOTTTTTTTTBBBBUUUUSSSS, P, P, P, PHHHHD WD WD WD WOOOORRRRKKKKSSSSHHHHOOOOPPPP J J J JUUUULLLLYYYY 2017 2017 2017 2017

DEPENDABLE SOFTWARE
FOR EMBEDDED SYSTEMS

MONIKA HEINER

BTU Cottbus
Computer Science Institute

Data Structures & Software Dependability

dependability engineering

 monika.heiner(at)b-tu.de July 2017

PPPPRRRROOOOLLLLOOOOGGGGUUUUEEEE

❑ my new car !my new car !my new car !my new car !

❑ my new my new my new my new

software software software software

toolkit ?toolkit ?toolkit ?toolkit ?

ABS
ESP USC

ASR
MSR

EBV

FTA SACTL/LTLNVP RBS

RBD

MTBF MTTF MTTR

SADT JSD
MASCOT

DFD CCS CSP

HOL

OBJ

LOTOS
VDM

Z

CORE ADTTL VDM++OOP
BOOP ASPECT

dependability engineering

 monika.heiner(at)b-tu.de July 2017

DEPENDABLE SOFTWARE - ALLIGATORS

❑ There is no such thing There is no such thing There is no such thing There is no such thing

as a as a as a as a complete task descriptioncomplete task descriptioncomplete task descriptioncomplete task description....

❑ Sw systems tend to be (very) large and Sw systems tend to be (very) large and Sw systems tend to be (very) large and Sw systems tend to be (very) large and

inherently inherently inherently inherently complexcomplexcomplexcomplex systems. systems. systems. systems.

-> mastering the complexity?

But, small system’s techniques
can not be scaled up easily.

❑ LargeLargeLargeLarge systems must be developed by systems must be developed by systems must be developed by systems must be developed by

large teams.large teams.large teams.large teams.

-> communication / organization overhead

But, many programmers tend to be lonely
workers.

❑ Sw systems are Sw systems are Sw systems are Sw systems are abstractabstractabstractabstract, i.e. have no , i.e. have no , i.e. have no , i.e. have no

physical form.physical form.physical form.physical form.

-> no constraints
by manufacturing processes or
by materials governed by physical laws

-> software engineering differs from
other engineering disciplines

But, human skills in abstract reasoning are
limited.

❑ Sw does not grow old.Sw does not grow old.Sw does not grow old.Sw does not grow old.

-> no natural die out of over-aged sw

-> sw cemetery

But, “sw mammoths” keep us busy.

dependability engineering

 monika.heiner(at)b-tu.de July 2017

OOOOVVVVEEEERRRRVVVVIIIIEEEEWWWW

❑ dependabilitydependabilitydependabilitydependability

taxonomytaxonomytaxonomytaxonomy

❑ methods methods methods methods

to improve to improve to improve to improve

dependabilitydependabilitydependabilitydependability

manuelly

computer-aided validation

FAULT AVOIDANCE

fault removal

FAULT TOLERANCE

fault masking

fault recovery

fault prevention

development phase operation phase

defensive

diversity

SOFTWARE DEPENDABILITY

animation / simulation / testing

context checking (static analysis)

consistency checking (verification)
-> model checking

dependability engineering

 monika.heiner(at)b-tu.de July 2017

STATE OF THE ART

❑ natural fault rate of seasoned programmers -
about 1-3 % of produced program lines

❑ undecidability of basic questions in sw validation

• program termination

• equivalence of programs

• program verification

• . . .

❑ validation = testing

❑ testing portion of total sw production effort

-> standard system: ≥ 50 %

-> extreme availability demands: ≈ 80 %

Murphy’s law:
There is always
still another fault.

cleanroom
approach

?

dependability engineering

 monika.heiner(at)b-tu.de July 2017

LLLLIIIIMMMMIIIITTTTAAAATTTTIIIIOOOONNNNSSSS OOOOFFFF T T T TEEEESSSSTTTTIIIINNNNGGGG

❑ “Testing means the execution of a pro-“Testing means the execution of a pro-“Testing means the execution of a pro-“Testing means the execution of a pro-

gram in order gram in order gram in order gram in order to find bugsto find bugsto find bugsto find bugs.” .” .” .” [Myers 79][Myers 79][Myers 79][Myers 79]

-> A test run is called successful,
if it discovers unknown bugs,
else unsuccessful.

❑ “Program testing can be used “Program testing can be used “Program testing can be used “Program testing can be used

to show the to show the to show the to show the presence of bugspresence of bugspresence of bugspresence of bugs, , , ,

but never to show their absence !” but never to show their absence !” but never to show their absence !” but never to show their absence !”

[Dijkstra 72][Dijkstra 72][Dijkstra 72][Dijkstra 72]

❑ testing is an inherently testing is an inherently testing is an inherently testing is an inherently destructivedestructivedestructivedestructive

tasktasktasktask

-> most programmers unable
to test own programs

❑ exhaustiveexhaustiveexhaustiveexhaustive testing impossibletesting impossibletesting impossibletesting impossible

• all valid inputs
-> correctness, . . .

• all invalid inputs
-> robustness, security, reliability, . . .

• state-preserving software (OS/IS):
a (trans-) action depends on
its predecessors
-> all possible state sequences

❑ systematic testing systematic testing systematic testing systematic testing

of concurrent programs of concurrent programs of concurrent programs of concurrent programs

is much more complicated than is much more complicated than is much more complicated than is much more complicated than

of sequential onesof sequential onesof sequential onesof sequential ones

dependability engineering

 monika.heiner(at)b-tu.de July 2017

TTTTEEEESSSSTTTTIIIINNNNGGGG OOOOFFFF C C C COOOONNNNCCCCUUUURRRRRRRREEEENNNNTTTT S S S SOOOOFFFFTTTTWWWWAAAARRRREEEE

❑ state space explosionstate space explosionstate space explosionstate space explosion,,,,

worst-case: product of the sequential state spacesworst-case: product of the sequential state spacesworst-case: product of the sequential state spacesworst-case: product of the sequential state spaces

❑ PPPPRRRROOOOBBBBEEEE EEEEFFFFFFFFEEEECCCCTTTT

• system exhibits in test mode
other (less) behavior than in standard mode
-> test means (debugger)
 affect timing behavior

• result: masking of certain types of bugs:
DSt (pn) -> not DSt (tpn)
live(pn) -> not live (tpn)
not BND (pn) -> BND (tpn)

❑ non-deterministic behaviornon-deterministic behaviornon-deterministic behaviornon-deterministic behavior,,,,

-> pn: time-dependent dynamic conflicts-> pn: time-dependent dynamic conflicts-> pn: time-dependent dynamic conflicts-> pn: time-dependent dynamic conflicts

❑ dedicated testing techniques to guarantee dedicated testing techniques to guarantee dedicated testing techniques to guarantee dedicated testing techniques to guarantee reproducibilityreproducibilityreproducibilityreproducibility,,,,

e. g. Instant Replay e. g. Instant Replay e. g. Instant Replay e. g. Instant Replay

PN TPN
T → TIME

prop(pn) prop(tpn)

RG (pn) RG (tpn)⊇

dependability engineering

 monika.heiner(at)b-tu.de July 2017

MODEL-BASED SYSTEM VALIDATION

❑ generalgeneralgeneralgeneral

principleprincipleprincipleprinciple

❑ modellingmodellingmodellingmodelling

= abstraction= abstraction= abstraction= abstraction

❑ analysisanalysisanalysisanalysis

= exhaustive= exhaustive= exhaustive= exhaustive

 exploration exploration exploration exploration

❑ (amount of)(amount of)(amount of)(amount of)

analysis analysis analysis analysis

techniques techniques techniques techniques

depend ondepend ondepend ondepend on

model typemodel typemodel typemodel type

Petrinetzmodel

properties

Problem
system

model
properties

system

modelling

analysis

conclusions

dependability engineering

 monika.heiner(at)b-tu.de July 2017

MODEL-BASED SYSTEM VALIDATION

❑ process and toolsprocess and toolsprocess and toolsprocess and tools

❑ DFG project,DFG project,DFG project,DFG project,

PLC’sPLC’sPLC’sPLC’s

❑ dedicateddedicateddedicateddedicated

technical language technical language technical language technical language

for requirement specfor requirement specfor requirement specfor requirement spec

❑ error messageerror messageerror messageerror message

= = = = inconsistencyinconsistencyinconsistencyinconsistency between between between between

system model &system model &system model &system model &

requirement specrequirement specrequirement specrequirement spec

❑ verification methodsverification methodsverification methodsverification methods

-> toolkit-> toolkit-> toolkit-> toolkit

requirements

controller environment
safety

requirements

modelling modelling

temporal

library

control
model

environment
model

set of
temporal

composition

system
model

errors /

formulae

logic

functional

inconsistencies

(compiler)

verification methods

dependability engineering

 monika.heiner(at)b-tu.de July 2017

MODEL-BASED SYSTEM VALIDATION

❑ objective - objective - objective - objective -

reuse of reuse of reuse of reuse of

certified certified certified certified

componentscomponentscomponentscomponents
REAL
PROGRAM

DREAM
PROGRAM

SAFETY
REQUIREMENTS

FUNCTIONAL
REQUIREMENTS

dependability engineering

 monika.heiner(at)b-tu.de July 2017

MMMMOOOODDDDEEEELLLL----BBBBAAAASSSSEEEEDDDD S S S SYYYYSSSSTTTTEEEEMMMM V V V VAAAALLLLIIIIDDDDAAAATTTTIIIIOOOONNNN

❑ model model model model

classesclassesclassesclasses

❑ analysisanalysisanalysisanalysis

methodsmethodsmethodsmethods

❑ analysisanalysisanalysisanalysis

objectivesobjectivesobjectivesobjectives

context checking

verification by
model checking

QUALITATIVE MODELS

performance
prediction

reliability
prediction

QUANTITATIVE MODELS

STOCHASTIC
MODELS

worst-case
evaluation

NON-STOCHASTIC
MODELS

MODEL CLASSES

dependability engineering

 monika.heiner(at)b-tu.de July 2017

SSSSTTTTAAAATTTTEEEE S S S SPPPPAAAACCCCEEEE E E E EXXXXPPPPLLLLOOOOSSSSIIIIOOOONNNN, P, P, P, POOOOSSSSSSSSIIIIBBBBLLLLEEEE A A A ANNNNSSSSWWWWEEEERRRRSSSS

BASE CASE TECHNIQUES

❑ compositionalcompositionalcompositionalcompositional methods methods methods methods

-> -> -> -> simple module interfaces simple module interfaces simple module interfaces simple module interfaces

❑ abstractionabstractionabstractionabstraction by ignoring some state by ignoring some state by ignoring some state by ignoring some state

informationinformationinformationinformation

-> -> -> -> conservative approximationconservative approximationconservative approximationconservative approximation

PROOF ENGINEERING

ALTERNATIVES ANALYSIS METHODS

❑ structuralstructuralstructuralstructural analysis analysis analysis analysis

-> -> -> -> structural properties, reductionstructural properties, reductionstructural properties, reductionstructural properties, reduction

❑ lnteger Linear Programminglnteger Linear Programminglnteger Linear Programminglnteger Linear Programming

❑ compressedcompressedcompressedcompressed state space representations state space representations state space representations state space representations

-> -> -> -> symbolic model checking (symbolic model checking (symbolic model checking (symbolic model checking (OxDDOxDDOxDDOxDD))))

❑ lazylazylazylazy state space construction state space construction state space construction state space construction

-> stubborn sets, sleep sets-> stubborn sets, sleep sets-> stubborn sets, sleep sets-> stubborn sets, sleep sets

❑ alternative state spaces alternative state spaces alternative state spaces alternative state spaces

((((partial orderpartial orderpartial orderpartial order representations) representations) representations) representations)

-> -> -> -> finite prefix of branching processfinite prefix of branching processfinite prefix of branching processfinite prefix of branching process

-> -> -> -> concurrent automatonconcurrent automatonconcurrent automatonconcurrent automaton

dependability engineering

 monika.heiner(at)b-tu.de July 2017

CCCCAAAASSSSEEEE S S S STTTTUUUUDDDDYYYY - P - P - P - PRRRROOOODDDDUUUUCCCCTTTTIIIIOOOONNNN C C C CEEEELLLLLLLL

feed belt (belt 1)

deposit belt (belt 2)

elevating rotary table

robot

arm 1

arm 2

press

travelling crane

14 sensors
34 commands

dependability engineering

 monika.heiner(at)b-tu.de July 2017

CCCCAAAASSSSEEEE S S S STTTTUUUUDDDDYYYY - D - D - D - DIIIINNNNIIIINNNNGGGG P P P PHHHHIIIILLLLOOOOSSSSOOOOPPPPHHHHEEEERRRRSSSS

BDD ABDD ABDD ABDD ANNNNAAAALLLLYYYYSSSSIIIISSSS R R R REEEESSSSUUUULLLLTTTT, P, P, P, PHHHHIIIILLLL1000:1000:1000:1000:

Number of places/marked places/transitions: 7000/2000/5000

Number of states: ca. 1.1 * 10e667
1137517608656205162806720354362767684058541876947800011092858232169918\\
1599595881220313326411206909717907134074139603793701320514129462357710\\
2442895227384242418853247239522943007188808619270527555972033293948691\\
3344982712874090358789533181711372863591957907236895570937383074225421\\
4932997350559348711208726085116502627818524644762991281238722816835426\\
4390437022222227167126998740049615901200930144970216630268925118631696\\
7921927977564308540767556777224220660450294623534355683154921949034887\\
4138935108726115227535084646719457353408471086965332494805497753382942\\
1717811011687720510211541690039211766279956422929032376885414750385275\\
51248819240105363652551190474777411874

Time to compute P-Invariants: 45885.66 sec
Number of P-Invariants: 3000
Time to compute compact coding: 385.59 sec
Number of Variables: 4000
Time: 3285.73 sec ca. 54.75’

dependability engineering

 monika.heiner(at)b-tu.de July 2017

SSSSUUUUMMMMMMMMAAAARRRRYYYY - S - S - S - SOOOOFFFFTTTTWWWWAAAARRRREEEE V V V VAAAALLLLIIIIDDDDAAAATTTTIIIIOOOONNNN

❑ validation can only be as good as validation can only be as good as validation can only be as good as validation can only be as good as

the the the the requirement specificationrequirement specificationrequirement specificationrequirement specification

-> readable <-> unambiguous

-> complete <-> limited size

❑ validation is extremely validation is extremely validation is extremely validation is extremely

time and resource consumingtime and resource consumingtime and resource consumingtime and resource consuming

-> ’external’ quality pressure ?

❑ sophisticated validation sophisticated validation sophisticated validation sophisticated validation

is not manageable without is not manageable without is not manageable without is not manageable without

theory & tool supporttheory & tool supporttheory & tool supporttheory & tool support

❑ validation needs validation needs validation needs validation needs

knowledgeable knowledgeable knowledgeable knowledgeable professionalsprofessionalsprofessionalsprofessionals

-> study / job specialization

-> profession of “software validator”

❑ validation is no substitute for thinkingvalidation is no substitute for thinkingvalidation is no substitute for thinkingvalidation is no substitute for thinking

❑ There is no such thing as There is no such thing as There is no such thing as There is no such thing as

a fault-free program !a fault-free program !a fault-free program !a fault-free program !

-> sufficient dependability
for a given user profile

dependability engineering

 monika.heiner(at)b-tu.de July 2017

AAAANNNNOOOOTTTTHHHHEEEERRRR S S S SUUUUMMMMMMMMAAAARRRRYYYY - - - - SSSSOOOOMMMMEEEE D D D DOOOOUUUUBBBBTTTTSSSS

dependability engineering

 monika.heiner(at)b-tu.de July 2017

FFFFAAAAUUUULLLLTTTT T T T TOOOOLLLLEEEERRRRAAAANNNNCCCCEEEE

❑ International Standard IEC 61508International Standard IEC 61508International Standard IEC 61508International Standard IEC 61508

Functional safety of Functional safety of Functional safety of Functional safety of

electrical/electronic/programmable electrical/electronic/programmable electrical/electronic/programmable electrical/electronic/programmable

electronic safety-related systemselectronic safety-related systemselectronic safety-related systemselectronic safety-related systems

❑ part 7part 7part 7part 7

Overview of techniques & measures,Overview of techniques & measures,Overview of techniques & measures,Overview of techniques & measures,

first edition August 2002first edition August 2002first edition August 2002first edition August 2002

❑ Annex CAnnex CAnnex CAnnex C

Overview of techniques and meas-Overview of techniques and meas-Overview of techniques and meas-Overview of techniques and meas-

ures for achieving software safety ures for achieving software safety ures for achieving software safety ures for achieving software safety

integrityintegrityintegrityintegrity

❑ C.2 Requirements and detailed designC.2 Requirements and detailed designC.2 Requirements and detailed designC.2 Requirements and detailed design

-> C.2.5 Defensive programming

❑ C.3 Architecture designC.3 Architecture designC.3 Architecture designC.3 Architecture design

-> C.3.1 Fault detection and diagnosis
-> C.3.2 Error detecting and correcting codes
-> C.3.3 Failure assertion programming
-> C.3.4 Safety bag
-> C.3.5 Software diversity
-> C.3.6 Recovery block
-> C.3.7 Backward recovery
-> C.3.8 Forward recovery
-> C.3.9 Re-try fault recovery mechanisms
-> C.3.10 Memorising executed cases
-> C.3.11 Graceful degradation
-> C.3.12 Artificial intelligence fault correction
-> C.3.13 Dynamic reconfiguration

dependability engineering

 monika.heiner(at)b-tu.de July 2017

FFFFAAAAUUUULLLLTTTT T T T TOOOOLLLLEEEERRRRAAAANNNNCCCCEEEE - D - D - D - DEEEEFFFFEEEENNNNSSSSIIIIVVVVEEEE S S S SOOOOFFFFTTTTWWWWAAAARRRREEEE

MMMMEEEEMMMMOOOORRRRIIIISSSSIIIINNNNGGGG

EEEEXXXXEEEECCCCUUUUTTTTEEEEDDDD CCCCAAAASSSSEEEESSSS

❑ to prevent to prevent to prevent to prevent

the execution of the execution of the execution of the execution of

un-known pathsun-known pathsun-known pathsun-known paths

❑ only tested pathsonly tested pathsonly tested pathsonly tested paths

are reliable pathsare reliable pathsare reliable pathsare reliable paths

❑ requiresrequiresrequiresrequires

excessive testingexcessive testingexcessive testingexcessive testing

kook

comparison
operation

testing

fail

result

current current

tested pathstested executable

test data

executable

program source

development phase

operation phase

compilation
instrumentation

data path

finish
testin

dependability engineering

 monika.heiner(at)b-tu.de July 2017

FFFFAAAAUUUULLLLTTTT TTTTOOOOLLLLEEEERRRRAAAANNNNCCCCEEEE - S - S - S - SOOOOFFFFTTTTWWWWAAAARRRREEEE D D D DIIIIVVVVEEEERRRRSSSSIIIITTTTYYYY

NNNN VVVVEEEERRRRSSSSIIIIOOOONNNN

PPPPRRRROOOOGGGGRRRRAAAAMMMMMMMMIIIINNNNGGGG

❑ parallel execution parallel execution parallel execution parallel execution

of n program versionsof n program versionsof n program versionsof n program versions

❑ followed by followed by followed by followed by

majority testmajority testmajority testmajority test

❑ higher abstraction level,higher abstraction level,higher abstraction level,higher abstraction level,

transitions:transitions:transitions:transitions:

-> program versions-> program versions-> program versions-> program versions

-> voting algorithm-> voting algorithm-> voting algorithm-> voting algorithm

two equal all unequalall equal

warning

v3v2

kook

voting

v1

fork

success

v3_end

v3_startv2_start

fail

voting result

v2_endv1_end

v1_start

start

voter

dependability engineering

 monika.heiner(at)b-tu.de July 2017

FFFFAAAAUUUULLLLTTTT TTTTOOOOLLLLEEEERRRRAAAANNNNCCCCEEEE - S - S - S - SOOOOFFFFTTTTWWWWAAAARRRREEEE D D D DIIIIVVVVEEEERRRRSSSSIIIITTTTYYYY

RRRREEEECCCCOOOOVVVVEEEERRRRYYYY BBBBLLLLOOOOCCCCKKKK

SSSSCCCCHHHHEEEEMMMMEEEE

❑ alternative execution alternative execution alternative execution alternative execution

of n program versionsof n program versionsof n program versionsof n program versions

❑ each followed by each followed by each followed by each followed by

acceptance testacceptance testacceptance testacceptance test

❑ high-level Petri nethigh-level Petri nethigh-level Petri nethigh-level Petri net

i > 3

last

i= 3i = 2

success

v3v2

i = 1

okko

reset to checkpoint;

acceptance test

v1

set checkpoint
i := 1

fail

test result

vi_end

checkpoint

start

 will

i++

dependability engineering

 monika.heiner(at)b-tu.de July 2017

SSSSUUUUMMMMMMMMAAAARRRRYYYY - F - F - F - FAAAAUUUULLLLTTTT T T T TOOOOLLLLEEEERRRRAAAANNNNCCCCEEEE

❑ fault tolerance allows basicallyfault tolerance allows basicallyfault tolerance allows basicallyfault tolerance allows basically

higher system reliability higher system reliability higher system reliability higher system reliability

than components’ reliabilitythan components’ reliabilitythan components’ reliabilitythan components’ reliability

❑ software fault tolerancesoftware fault tolerancesoftware fault tolerancesoftware fault tolerance

= redundancy + DIVERSITY= redundancy + DIVERSITY= redundancy + DIVERSITY= redundancy + DIVERSITY

❑ (diverse) fault tolerance is extremely (diverse) fault tolerance is extremely (diverse) fault tolerance is extremely (diverse) fault tolerance is extremely

expensiveexpensiveexpensiveexpensive

-> development & operation phase

-> time & human/hardware resources

-> what is more expensive:
thorough validation or fault tolerance ?

❑ fault tolerance = increased complexityfault tolerance = increased complexityfault tolerance = increased complexityfault tolerance = increased complexity

-> complexity <-> fault avoidance

-> fault tolerance <->
reuse of trustworthy components

-> advanced software engineering skills

❑ fault tolerance is fault tolerance is fault tolerance is fault tolerance is

no substitute for fault avoidanceno substitute for fault avoidanceno substitute for fault avoidanceno substitute for fault avoidance

❑ fault tolerance is fault tolerance is fault tolerance is fault tolerance is

no substitute for thinkingno substitute for thinkingno substitute for thinkingno substitute for thinking

❑ tailored amount of fault tolerancetailored amount of fault tolerancetailored amount of fault tolerancetailored amount of fault tolerance

requires requires requires requires

sound software reliability measures sound software reliability measures sound software reliability measures sound software reliability measures

Think twice
before using fault tolerance !

Look twice
for suitable module sizes !

dependability engineering

 monika.heiner(at)b-tu.de July 2017

AAAANNNNOOOOTTTTHHHHEEEERRRR S S S SUUUUMMMMMMMMAAAARRRRYYYY - B - B - B - BEEEEYYYYOOOONNNNDDDD TTTTHHHHEEEE L L L LIIIIMMMMIIIITTTT

dependability engineering

 monika.heiner(at)b-tu.de July 2017

EEEEPPPPIIIILLLLOOOOGGGGUUUUEEEE

❑ Model-based software validationModel-based software validationModel-based software validationModel-based software validation

- waste of money ?- waste of money ?- waste of money ?- waste of money ?

❑ Fault-tolerant softwareFault-tolerant softwareFault-tolerant softwareFault-tolerant software

- just another way to waste money ?- just another way to waste money ?- just another way to waste money ?- just another way to waste money ?

❑ Dependable software Dependable software Dependable software Dependable software
- an unrealistic dream or just a reality far away ?- an unrealistic dream or just a reality far away ?- an unrealistic dream or just a reality far away ?- an unrealistic dream or just a reality far away ?

