MODEL CHECKING OF CONCURRENT SYSTEMS - PART I -

Monika Heiner
BTU Cottbus, Computer Science Institute

MODEL-BASED SYSTEM ANALYSIS
Model-Based System Analysis

Basic Ingredients

- **a language to model the system**
 - formal semantics
 - many options, e.g.
 - Petri nets

- **a language to specify model properties**
 - temporal Logics,
 - several options, e.g.
 - Computational Tree Logic (CTL)

- **an analysis approach to check a model against its properties**
 - model checking,
 - various approaches (algorithms + data structures), e.g.
 - using reachability graph (RG)
 - labelled state transition system (STS) = Kripke structure
 - Continuous Time Markov Chain (CTMC)
The modelling language -
Petri nets,
a crash course

A Bit of History

C. A. Petri, November 2006
PETRI NETS, BASICS - THE STRUCTURE

- **atomic actions** -> Petri net transitions -> chemical reactions

 \[2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O}\]

- **local conditions** -> Petri net places -> chemical compounds

- **multiplicities** -> Petri net arc weights -> stoichiometric relations

- **condition’s state** -> token(s) in its place -> available amount (e.g. mol)

- **system state** -> marking -> compounds distribution

- **PN = (P, T, F, m_0)**, \(F: (P \times T) \cup (T \times P) \rightarrow N_0\), \(m_0: P \rightarrow N_0\)
PETRI NETS, BASICS - THE BEHAVIOUR

- atomic actions → Petri net transitions → chemical reactions

 \[2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O} \]

- input compounds

- output compounds

- **TOKEN GAME**

- **DYNAMIC BEHAVIOUR** (substance/signal flow)

PARTIAL ORDER VERSUS INTERLEAVING SEMANTICS

- order between r1 - r2 and r1 - r3
 - causality \(x < y \) [x⋅y]
 - dependency

- no order between r2 , r3
 - concurrency \(x \parallel y \)
 - independency

- possible interleaving runs
 - r1 - r2 - r3
 - r1 - r3 - r2

- totally ordered runs
 - \(r1 < r2 < r3 \)

- partial order run
 - \(r1 < r2 < r3 \)

- **INTERLEAVING SEMANTICS**
 - all totally ordered runs

- **PARTIAL ORDER SEMANTICS**
 - “true concurrency semantics”
 - all partially ordered runs
Some examples

EXAMPLE 1 - PRODUCER/CONSUMER SYSTEM IN FOUR VERSIONS

SYSTMS WITHOUT ARC WEIGHTS

SYSTMS WITH ARC WEIGHTS
EXAMPLE 2 - DINING PHILOSOPHERS

EXAMPLE 2 - DINING PHILOSOPHERS, ONE PHILOSOPHER
EXAMPLE 2 - SYSTEM OF N PHILOSOPHERS

EXAMPLE 3 - TRAVEL PLANNING
EXAMPLE 4 - PRODUCTION CELL

deposit belt (belt 2)

travelling crane

feed belt (belt 1)
elevating rotary table

EXAMPLE 4 - CLOSED SYSTEM, COARSE STRUCTURE

deposit_belt
ch_DC_full
ch_DC_free
ch_CF_full
ch_CF_free
ch_FT_free
ch_TA1_free
ch_A1P_free
ch_A1P_full
ch_PA2_free
ch_PA2_full
ch_A2D_free
ch_A2D_full
arm1
arm2
table
press
swivel

231 P,
202 T,
65 PAGES
Example 5 - SOLITAIRE GAME

- two versions, green squares Y/N
- all but one squares carry tokens
- remove tokens by jumping over them
- goal of the game: only one token left
- questions: is there a solution?
- always?

Example 5 - SOLITAIRE GAME

- two-level hierarchical pn
- only one square net component
- two states for each square i: T(i), F(i)
- goal of the game: dead state(s) with \(\Sigma T(i) = 1 \)
- reachable?
- for any initial marking?

VERSION2
Example 5 - SOLITAIRE GAME

- square component
- counter facilitates reachbility question, but hinders analysis

Example 6 - HALOBACTERIUM SALINARUM

[Marwan; Oesterhelt 1999]
EXAMPLE 6 - HALOBACTERIUM SALINARUM

EXAMPLE - MAPK Signalling Cascade

[LEVCHENKO 2000]
EXAMPLE - MAPK SIGNALLING CASCADE

Petri nets, summary
WHY PETRI NETS?

- A suitable intermediate representation for
 - Different (specification/programming) languages,
 - Different phases of software development cycle,
 - Different validation methods;
 - Technical & natural systems

- Modelling power
 - Partial order (true concurrency) semantics
 - Applicable on any abstraction level
 - Specification of limited resources possible

- Analyzing power
 - Combination of static and dynamic analysis techniques
 - Rich choice of methods, algorithms, tools

- **BUT:** Modelling power <-> Analyzing power

PETRI NETS, MODEL CLASSES

- **Place/Transition Petri Net (Coloured PN)**
 - Context checking by Petri net theory
 - Verification by temporal logics

- **Time-Dependent PN**

- **Non-Stochastic Petri Net**
 - Worst-case evaluation

- **Stochastic Petri Net**
 - Performance prediction
 - Reliability prediction

Petri nets, typical properties

Typical Petri Net Questions

- How many tokens can reside at most in a given place?
 - \((0, 1, k, \infty)\) -> **boundedness**

- How often can a transition fire?
 - \((0\text{-times}, n\text{-times}, \infty\text{-times})\) -> **liveness**

- How often can a system state be reached?
 - never -> **unreachability** -> safety properties
 - n-times -> **reproducibility**
 - always reachable again -> **reversibility** (home state)
 - reversible initial state -> **reversibility**

- Are there behaviourally invariant subnet structures?
 - token conservation -> **P - invariants**
 - token distribution reproduction -> **T - invariants**

- . . . and many more -> temporal logics (CTL, LTL)
Petri nets,
typical analysis techniques

MODEL ANIMATION (?)

Dynamic analyses
Dynamic Analyses

- **reachability / occurrence graph**,
 - (labelled) state transition system (-> graph)
 - Kripke structure, CTMC, . . .

- **nodes**
 - system states / markings

- **arcs**
 - the (single) firing transition
 - single step firing

- **interleaving semantics**
 - (sequential) finite automaton
 - concurrency == enumerating all interleaving sequences

- **reachability graph construction - simple algorithm**

Reachability Graph, Dining Philosophers (2 Phils),

![Dining Philosophers Diagram](image)
REACHABILITY GRAPH EVALUATION

- boundedness
 -> finite graph

- reversibility
 -> one Strongly Connected Component (SCC)

- liveness
 -> every transition contained in all terminal SCC

- dead states (deadlock)
 -> terminal nodes

-> reachability graphs tend to be huge <-
REACHABILITY GRAPH, STATE SPACE COMPLEXITY

- infinite for unbounded nets
- worst-case for finite state spaces [Priese, Wimmel 2003]
 ... cannot be bounded by a primitive recursive function ...

- proof -> Petri net computer for a function \(f: \mathbb{N}_0^m \rightarrow \mathbb{N}_0 \)

 \[
 f \text{ is weakly pn-computable:} \\
 \text{EF(out } = f(\text{in}) \& \text{ stop } = 1 \)
 \]

in

start

\(\begin{array}{c}
\text{in} \\
\text{start} \\
\end{array} \)

out

stop

Ackermann function \(a_1 \)
Reachability Graph, State Space Complexity

- Infinite for unbounded nets
- Worst-case for finite state spaces [Priese, Wimmel 2003]

 ... cannot be bounded by a primitive recursive function ...

Proof -> Petri net computer for a function \(f: N_0^m \rightarrow N_0 \)

- \(f \) is weakly pn-computable:

 \[
 \text{EF}(\text{out} = f(\text{in}) \land \text{stop} = 1)
 \]

 Ackermann function \(a_2 \)

State Space Complexity, Causes

- \(n! \) interleaving sequences
 - \(m \rightarrow m' \)
- \(2^n - 2 \) intermediate states

\[
\frac{(n + k - 1)!}{(n - 1)! k!} \quad \text{states}
\]

(combination with repetition)
ANALYSIS TECHNIQUES

- static analyses -> no state space construction
 - structural properties (graph theory)
 - P / T - invariants (linear algebra)
 - state equation
- dynamic analyses -> total / partial state space construction
 - analysis of general behavioural system properties,
 i.e. boundedness, liveness, reversibility
 - model checking of special behavioural system properties,
 e.g. reachability of a given (sub-) system state (with constraints),
 reproducability of a given (sub-) system state (with constraints)
 => expressed in temporal logics (CTL / LTL),
 as very flexible & powerful query language

ANALYSIS TOOLS

- Petri net theory
 - INA (HU Berlin)
 - TINA (LAAS/CNRS)
 - Charlie
- model checking
 - reachability graph
 -> INA, Charlie
 -> LoLA
 - lazy state spaces
 - stubborn set reduction
 -> LoLA
 - symmetry reduction
 -> LoLA
 - compressed state spaces
 (BDD, PDD, ... , CDD)
 -> bdd-CTL, SMART
 -> idd-CTL
 - Kleene algebra
 -> [Kemper]
 - prefix
 -> PEP (CTL_0)
 - process automata
 -> [pd]
to be continued:
Temporal Logics,
CTL -
a crash cours