Hybrid Modelling using Generalised Hybrid Petri Nets

Mostafa Herajy and Monika Heiner

Chair of Data Structures and Software Dependability, Computer Science Department, Brandenburg University of Technology, Cottbus, Germany

Heidelberg 2011

- Some biological models require to be represented in hybrid way (Cells/Molecular interactions in one model).
- Continuous deterministic simulation does not consider the fluctuation of molecules, specially when there is a low number of them.
- Stochastic Simulation is computational expensive (fast reactions, large number of molecules).

CPN and GSPN

- Continuous Petri Nets:
 - Continuous places
 - Continuous transitions
- Generalized Stochastic Petri Nets
 - Discrete places
 - Stochastic transitions
 - Immediate transitions
 - Deterministic transitions
 - Scheduled transitions

Combines both CPN and GSPN into one class

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN
- The final model can be simulated using either static or dynamic partitioning

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN
- The final model can be simulated using either static or dynamic partitioning
- Biological switch can be easily represented

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN
- The final model can be simulated using either static or dynamic partitioning
- Biological switch can be easily represented

Elements

Transitions

Stochastic Continuous Immediate Deterministic Scheduled

Edges

Connectivity

Simulation Methods

Simulation of GHPN

■ Static partitioning: partitioning is done off-line before the simulation starts.

■ Dynamic partitioning: partitioning is done on-line during the simulation.

Static Partitioning:

- The user has to provide the partitioning.
- There is no additional computational overhead due to partitioning.
- It is not user friendly.
- It is not suitable for all applications.

Dynamic Partitioning:

- The partitioning is done automatically without user intervention.
- There is additional computational overhead due to partitioning.
- The simulation is independent from the Petri net representation.
- It is suited for models where the time saving due to on-line partitioning is greater than the partitioning time overhead.

Examples

- Water Tank
- T7 Phage
- Goutsias Model
- Circadian Oscillator

The Water Tank Model

Examples

The Water Tank Model

T7 Phage

No.	Reaction	Propensity	Rate
R1	$gen \rightarrow temp$	$c_1 \cdot gen$	$c_1 = 0.0025$
R2	$temp o \phi$	$c_2 \cdot temp$	$c_2 = 0.25$
R3	$temp \rightarrow temp + gen$	$c_3 \cdot temp$	$c_3 = 1.0$
R4	$gen + struct \rightarrow "virus"$	$c_4 \cdot gen \cdot struct$	$c_4 = 7.5 \times 10E - 6$
R5	$temp \rightarrow temp + struct$	$c_5 \cdot temp$	$c_5 = 1000$
R6	$struct \rightarrow \phi$	$c_6 \cdot struct$	$c_6 = 1.99$

Srivastava et al 2002

Examples

0.025

T7 Phage (GHPN)

 R₅ and R₆ are represented as continuous reactions

■ R_1 , R_2 , R_3 , and R_4 are represented as continuous reactions

T7 Phage Simulation Results

Examples

Goutsias Model (GHPN)

Goutsias Model (Simulation Results)

Circadian Oscillator

Simulation Time

	Continuous	Stochastic	hybrid	hybrid
			(static)	(dynamic)
Goutsias	0.01	0.972	0.014	0.138
Oscillator	0.258	5.995	4.21	1.991
T7 Phage	0.007	12.36	0.210	0.107

Examples

Live Demo using Snoopy

Thank You

