Hybrid Modelling using Generalised Hybrid Petri Nets

Mostafa Herajy and Monika Heiner

Chair of Data Structures and Software Dependability,
Computer Science Department,
Brandenburg University of Technology,
Cottbus, Germany

Heidelberg 2011
Motivations

- Some biological models require to be represented in hybrid way (Cells/Molecular interactions in one model).
- Continuous deterministic simulation does not consider the fluctuation of molecules, specially when there is a low number of them.
- Stochastic Simulation is computational expensive (fast reactions, large number of molecules).
CPN and GSPN

- **Continuous Petri Nets:**
 - Continuous places
 - Continuous transitions

- **Generalized Stochastic Petri Nets**
 - Discrete places
 - Stochastic transitions
 - Immediate transitions
 - Deterministic transitions
 - Scheduled transitions
Features of GHPN

- Combines both CPN and GSPN into one class
Features of GHPN

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
Features of GHPN

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN
Features of GHPN

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN
- The final model can be simulated using either static or dynamic partitioning
Features of GHPN

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN
- The final model can be simulated using either static or dynamic partitioning
- Biological switch can be easily represented
Features of GHPN

- Combines both CPN and GSPN into one class
- Different transition types → different reaction types can be modelled using GHPN
- Stiff biochemical networks can be easily modelled and simulated using GHPN
- The final model can be simulated using either static or dynamic partitioning
- Biological switch can be easily represented
Elements

Places

- Discrete
- Continuous

Transitions

- Stochastic
- Continuous Immediate
- Deterministic
- Scheduled

Edges

- Standard
- Read
- Inhibitor
- Equal
- Reset
- Modifier

M. Herajy and M. Heiner BTU Cottbus

Generalised Hybrid Petri Nets
Connectivity

Continuous Transition

Discrete Transition

Continuous Transition
Simulation Methods

- Stochastic
- Hybrid
- Deterministic

- Much Faster
- Much Accurate
Simulation of GHPN

- Static partitioning: partitioning is done off-line before the simulation starts.

- Dynamic partitioning: partitioning is done on-line during the simulation.
Static Partitioning:

- The user has to provide the partitioning.
- There is no additional computational overhead due to partitioning.
- It is not user friendly.
- It is not suitable for all applications.
Dynamic Partitioning:

- The partitioning is done automatically without user intervention.
- There is additional computational overhead due to partitioning.
- The simulation is independent from the Petri net representation.
- It is suited for models where the time saving due to on-line partitioning is greater than the partitioning time overhead.
Examples

- Water Tank
- T7 Phage
- Goutsias Model
- Circadian Oscillator
The Water Tank Model

M. Herajy and M. Heiner
BTU Cottbus

Generalised Hybrid Petri Nets
The Water Tank Model

M. Herajy and M. Heiner
BTU Cottbus
Generalised Hybrid Petri Nets
T7 Phage

<table>
<thead>
<tr>
<th>No.</th>
<th>Reaction</th>
<th>Propensity</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>$gen \rightarrow temp$</td>
<td>$c_1 \cdot gen$</td>
<td>$c_1 = 0.0025$</td>
</tr>
<tr>
<td>R2</td>
<td>$temp \rightarrow \phi$</td>
<td>$c_2 \cdot temp$</td>
<td>$c_2 = 0.25$</td>
</tr>
<tr>
<td>R3</td>
<td>$temp \rightarrow temp + gen$</td>
<td>$c_3 \cdot temp$</td>
<td>$c_3 = 1.0$</td>
</tr>
<tr>
<td>R4</td>
<td>$gen + struct \rightarrow "virus"$</td>
<td>$c_4 \cdot gen \cdot struct$</td>
<td>$c_4 = 7.5 \times 10^{-6}$</td>
</tr>
<tr>
<td>R5</td>
<td>$temp \rightarrow temp + struct$</td>
<td>$c_5 \cdot temp$</td>
<td>$c_5 = 1000$</td>
</tr>
<tr>
<td>R6</td>
<td>$struct \rightarrow \phi$</td>
<td>$c_6 \cdot struct$</td>
<td>$c_6 = 1.99$</td>
</tr>
</tbody>
</table>

Srivastava et al 2002
T7 Phage (GHPN)

- R_5 and R_6 are represented as continuous reactions

- R_1, R_2, R_3, and R_4 are represented as continuous reactions
T7 Phage Simulation Results

![Graph showing simulation results with three curves: Hybrid (red solid line), Continuous (green dashed line), and Stochastic (blue dotted line). The x-axis represents time, and the y-axis represents the amount of water. The graph illustrates the comparison between different simulation approaches.]

M. Herajy and M. Heiner
Generalised Hybrid Petri Nets
Goutsiàs Model (GHPN)
Goutsias Model (Simulation Results)
Circadian Oscillator

M. Herajy and M. Heiner

Generalised Hybrid Petri Nets
Circadian Oscillator (Cont.)

Continuous ($k_{17}=0.2$)

![Continuous ($k_{17}=0.2$) Graph]

Continuous ($k_{17}=0.08$)

![Continuous ($k_{17}=0.08$) Graph]

Stochastic ($k_{17}=0.08$)

![Stochastic ($k_{17}=0.08$) Graph]

Hybrid ($k_{17}=0.08$)

![Hybrid ($k_{17}=0.08$) Graph]
Simulation Time

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous</th>
<th>Stochastic</th>
<th>hybrid (static)</th>
<th>hybrid (dynamic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goutsias</td>
<td>0.01</td>
<td>0.972</td>
<td>0.014</td>
<td>0.138</td>
</tr>
<tr>
<td>Oscillator</td>
<td>0.258</td>
<td>5.995</td>
<td>4.21</td>
<td>1.991</td>
</tr>
<tr>
<td>T7 Phage</td>
<td>0.007</td>
<td>12.36</td>
<td>0.210</td>
<td>0.107</td>
</tr>
</tbody>
</table>
Live Demo using Snoopy
Thank You