PETRI NET TUTORIAL – PART 1:

BIOMODEL ENGINEERING VIA MODULAR, PROTEIN-ORIENTED MODELING

MARY ANN BLÄTKE

@ ICSB 2011, Heidelberg
BIOMODEL ENGINEERING VIA MODULAR, PROTEIN-ORIENTED MODELLING

MOTIVATIONS
Motivation

- Monolithic pathway models are not always easy to handle
 - Hard to maintain, update and curate
 - Coupling of different pathway models is far from trivial

⇒ Our Idea: Modular representation of proteins with a defined connection interface
Motivation

- ODEs are not always the best choice (see also Ref. [2])
 - Difficult analysis of topological network properties
 - Mathematical structure hides biological information
 - Transformation into a reaction network is not unique
 - Difficult to understand for “wet-lab” biologists

⇒ Our Idea: Using the power of Petri nets to model molecular networks [Heiner et al., 2010]
BIOMODEL ENGINEERING VIA MODULAR, PROTEIN-ORIENTED MODELLING

MODULAR PETRI NET MODELING CONCEPT
STRUCTURE OF A MODULE AND PROPERTIES

- Domain-related representation of a protein, its interactions and intermolecular changes by a Petri net

1.) Literature Research

2.) Translation into a PN

[Kim et al., 2007]
Structure of a Module and Properties

- Domain-related representation of a protein, its interactions and intermolecular changes by a Petri net
 - Place – Specific state of a protein domain (or a non-protein)
 - Transitions – Shifts between different states
 - Principle of double-entry bookkeeping -> shared copies of identical subnets among interacting proteins

1.) Literature Research

2.) Translation into a PN

[Kim et al., 2007]
STRUCTURE OF A MODULE AND PROPERTIES

- Domain-related representation of a protein, its interactions and intermolecular changes by a Petri net
 - Place – Specific state of a protein domain (or a non-protein)
 - Transitions – Shifts between different states

⇒ A module is a comprehensive “review article” about a protein in the form of a Petri net

1.) Literature Research
2.) Translation into a PN

[Kim et al., 2007]
VALIDATION OF A MODULE

- Domain-related representation of a protein, its interactions and intermolecular changes by a Petri net
 - Place – Specific state of a protein domain (or a non-protein)
 - Transitions – Shifts between different states
 - Principle of double-entry bookkeeping -> shared copies of identical subnets among interacting protein
VALIDATION OF A MODULE

- Domain-related representation of a protein, its interactions and intermolecular changes by a Petri net
 - Place – Specific state of a protein domain (or a non-protein)
 - Transitions – Shifts between different states
 - Principle of double-entry bookkeeping -> shared copies of identical subnets among interacting protein

validation of each module by topological properties of a Petri net and simulation studies
Validation of a Module

Properties:

<table>
<thead>
<tr>
<th>PUR</th>
<th>ORD</th>
<th>HOM</th>
<th>NBM</th>
<th>CSV</th>
<th>SCF</th>
<th>FT0</th>
<th>TFO</th>
<th>FP0</th>
<th>PFO</th>
<th>CON</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>DTP</td>
<td>CPI</td>
<td>CTI</td>
<td>SCTI</td>
<td>SB</td>
<td>k-B</td>
<td>1-B</td>
<td>DCF</td>
<td>DSt</td>
<td>DTr</td>
<td>LIV</td>
<td>REV</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

 Covered with P-INV:

- **Set of all possible states of a domain of the module-protein, an interactive protein or of the non-protein**

Stochastic simulation studies:

- Dynamic behavior of the modules has to reflect the assigned function of the proteins
Generation of a Modular Network

- Generation of a modular network from a set of modules
- Identical copies of subnets and places of non-proteins build the connection interface among the modules

Indicate identical subnets as logical subnets
Wrap every module in a macro place
Insert all modules in one Petri net

Valid Modular Network

Recheck of the modular network
GENERATION OF A MODULAR NETWORK

- Generation of a modular network from a set of modules
- Identical copies of subnets and places of non-proteins build the connection interface among the modules

[Heinrich et al., 2003]
Properties of the Modular Network

Modules:

<table>
<thead>
<tr>
<th>PUR</th>
<th>ORD</th>
<th>HOM</th>
<th>NBM</th>
<th>CSV</th>
<th>SCF</th>
<th>FT0</th>
<th>TF0</th>
<th>FP0</th>
<th>PFO</th>
<th>CON</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DTP</th>
<th>CPI</th>
<th>CTI</th>
<th>SCTI</th>
<th>SB</th>
<th>k-B</th>
<th>1-B</th>
<th>DCF</th>
<th>DSt</th>
<th>DTr</th>
<th>LIV</th>
<th>REV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Modular network:

<table>
<thead>
<tr>
<th>PUR</th>
<th>ORD</th>
<th>HOM</th>
<th>NBM</th>
<th>CSV</th>
<th>SCF</th>
<th>FT0</th>
<th>TF0</th>
<th>FP0</th>
<th>PFO</th>
<th>CON</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DTP</th>
<th>CPI</th>
<th>CTI</th>
<th>SCTI</th>
<th>SB</th>
<th>k-B</th>
<th>1-B</th>
<th>DCF</th>
<th>DSt</th>
<th>DTr</th>
<th>LIV</th>
<th>REV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

- **TRANSFER** must not be fulfilled \(\Rightarrow\) **1:1 Transfer**
- **variable** \(\Rightarrow\) **Determined by the intersection of the modules**
- **must be fulfilled** \(\Rightarrow\) **1:1 Transfer**

@ ICSB 2011, Heidelberg
BIOMODEL ENGINEERING VIA MODULAR, PROTEIN-ORIENTED MODELLING

CASE STUDY - JAK-STAT PATHWAY...
BIOMOLECULAR NETWORK

- Main Components: Receptor, JAK, STAT
 - Receptor – Il6-Receptor (here)
 - JAK – Janus- Kinase
 - STAT – Signal Transducer and Activator of Transcription

- Inflammation and the immune response, haematopoiesis, liver and neuronal regeneration, embryonal development and fertility...

[Heinrich et al., 2003]
MODULAR MODEL

[Heinrich et al., 2003]
MODEL DIMENSION

- Protein modules: 7
- Extension:
 - 1x degradation module,
 - 1 x gene expression module
- Places: 92
- Transition: 102
- Edges: 487
- Pages: 58
- Nesting Depth: 4
LIVE DEMONSTRATION
ADVANTAGES

- Modules are...
 - interactive reviews of spread information about a protein
 - easy to update, to extend,
 - to couple by identical matching subnets => straight forward generation of modular networks
 - reusable in other networks
- Extend the modular core network with gene expression, degradation, translocation modules...
OUTLOOK: MODULAR MODELING CONCEPT

- Network reconstruction coupled with modular modeling concept
- Advanced analysis of structural motifs
- Other case studies: pain signaling, EGF pathway...

[Heinrich et al., 2003]
OUTLOOK: DATABASE CONCEPT

- Modeling platform for protein modules:
 - Organization of the modules
 - Module + data set offering detailed information
 - Strict naming convention
 - Automatic generation of modular networks from a set of approved curated modules
 → Iterative search of coupling partners
 → Pathway oriented suggestion using tags

Web-Database
OUTLOOK: DATABASE CONCEPT

Interaction Matrix in the Background of the Database

<table>
<thead>
<tr>
<th></th>
<th>ADCYS</th>
<th>GNAI1</th>
<th>GNAS1</th>
<th>OPRD1</th>
<th>OPRK1</th>
<th>OPRM1</th>
<th>PRKACA</th>
<th>PRKCA</th>
<th>PRKCZ</th>
<th>TRPV1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCYS</td>
<td></td>
</tr>
<tr>
<td>GNAI1</td>
<td></td>
</tr>
<tr>
<td>GNAS1</td>
<td></td>
</tr>
<tr>
<td>OPRD1</td>
<td></td>
</tr>
<tr>
<td>OPRK1</td>
<td></td>
</tr>
<tr>
<td>OPRM1</td>
<td></td>
</tr>
<tr>
<td>PRKACA</td>
<td></td>
</tr>
<tr>
<td>PRKCA</td>
<td></td>
</tr>
<tr>
<td>PRKCZ</td>
<td></td>
</tr>
<tr>
<td>TRPV1</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
ITERATIVE SEARCH OF COUPLING PARTNERS

1.) Search Interacting Proteins

Method: Iterative Network Generation
1. Stringency: Human
2. Start-Protein: ADCY5
 2. Interaction
 1. Interaction
 GNAI1
 OPRK1
 OPRM1
 Start-Protein
 GNAS1
 ...
 PRKCA
 ...
 3. Interaction
 PRKACA
 TRPV1
 ...

2.) List of Interacting Proteins

<table>
<thead>
<tr>
<th>Accession No.</th>
<th>Gene Symbol</th>
<th>Organism</th>
<th>Author</th>
<th>Version</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>O95622</td>
<td>ADCY5</td>
<td>Human</td>
<td>Author1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Author2</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>P63096</td>
<td>GNAI1</td>
<td>Human</td>
<td>Author3</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>G5JWF2</td>
<td>GNAS1</td>
<td>Human</td>
<td>Author4</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>P41143</td>
<td>OPRD1</td>
<td>Human</td>
<td>Author3</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>P41145</td>
<td>OPRK1</td>
<td>Human</td>
<td>Author5</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>P63096</td>
<td>OPRM1</td>
<td>Human</td>
<td>Author5</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>P17612</td>
<td>PRKACA</td>
<td>Human</td>
<td>Author6</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Author7</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>P17252</td>
<td>PRKCA</td>
<td>Human</td>
<td>Author1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>Q05513</td>
<td>PRKCA</td>
<td>Human</td>
<td>Author1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>Q8NER1</td>
<td>TRPV1</td>
<td>Human</td>
<td>Author8</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

3.) Export of the Generated Network

@ ICSB 2011, Heidelberg