Multiscale modeling Analysis tools

Fly wing model

Fly wing model

- Concentration of a particular protein complex (FFD) influence hair growth
- Discriminate the cells by FFD concentration behaviour in both proximal (left) and distant (right) comparments

Clustering

- Clustering is the process of grouping a set of objects in groups called clusters
- Object belonging to the same cluster have high similarity
- Objects belonging to different clusters have low similarity

Time Series Clustering

- The curve can be represented as a vector v app a R^n of time points
- N (the number of time points) is usually very large
- We apply Principal Component Analysis to reduce the space (by looking at the most important time points)
- R^n -> R^m (where m << n)

Clustering

- Classic clustering techniques can usually recognize spherical shapes
- But the clusters can be difficult to recognize:
 - Different shapes
 - Different sizes

Density-Based Clustering

- Detects "dense areas" of space
- Can detect clusters of arbitrary shape
- Needs two parameters to define density:
 - *Eps*: radius of the neighborhood
 - *MinPts*: min number of points to form a cluster

Density-Based Clustering

Mutated Tissue Result

Mutated Tissue Result

From time series to temporal logic

- Temporal logics are formal languages used to describe time series
- PLTLc: Probabilistic Linear Time Logic with constraints
- We can describe the behaviour of a curve (both wet lab or simulation trace)
- Ex. P=? [d(Protein) > 0 U (G(d(Protein) < 0))]
 "The concentration of Protein rises then falls"

- How can we characterize a cluster of time series with PLTLc?
 - The PLTLc description must be general enough to include all the curves belonging to the same cluster
 - The description must be specific enough to differentiate time series belonging to different clusters

- 3 steps characterization:
 - Derivative trend different behaviour or time shifts
 - Extrema (min and max points) different peaks
 - Steady state different activation level

P=? [d[FFD]> 0.01 U (d[FFD]> -0.01 ^ d[FFD]< 0.01)]

P=? [d[FFD]> 0.01 U (d[FFD]> -0.01 ^ d[FFD]< 0.01 U (d[FFD]< -0.01 U (d[FFD]> -0.01 ^ d[FFD]< 0.01)))]

Automatically Generated Descriptions

P=? [F([FFD] >= 0.59355^ [FFD] <= 0.63943 ^ Time >= 4 ^ Time <= 7) ^ d[FFD]> 0.01 U (d[FFD]> - 0.01 ^ d[FFD]< 0.01 U (d[FFD]< -0.01 U (d[FFD]> -0.01 ^ d[FFD]< 0.01)))]

P=? [d[FFD]> 0.01 U (d[FFD]> -0.01 ^ d[FFD]< 0.01 ^ G([FFD] >= 0.94 ^ [FFD] <= 1))]