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Modelling challenges

Design & construction: model hierarchy over different spatial scales in a

compact and parameterised manner
Simulation: models comprise a very large number of underlying ODEs, e.g.
— 800-cells: 164,000 ODEs/species & 229,000 reactions; more than 2 hours
Expensive model fitting (parameter optimisation): large model & lacking data
— Requires many repeated lengthy simulations
How to visualise, analyse & validate multi-scale models

— Comparison against semi-quantitative data



Unfolding,
Simulation & Analysis
(Snoopy)

Unfolding

Automatically

(H)CPN Model
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Unfolding - issues

Have to unfold all possibilities

— All combinations of the colour tuples over all the
ranges of the corresponding colour types

Expense of time & space for unfolding
Can benefit by a constraints approach
Computation time >> unfolding time

Some scenarios better to simulate at folded level
— Current challenge!



Some Statistics

Unbiased PCP model size and runtime? for unfolding and continuous simulation over 1000 time units.

Size Unfolding runtime (seconds) Simulation runtime (seconds)

Grid(M x N) Cells Places  Transitions | Before optimisation  After optimisation
bxh 12 2028 2802 319 1.154 3.145
10x10 50 8450 11,826 9.714 2613 14,618
15x15 112 18928 26,622 2.771 4495 42.586
20x20 200 33,800 47,646 44,818 9.231 88.886
40x40 800 135200 191,286 280.598 83.162 371.647
40 x 40° 800 164,000 229,686 329.384 120.186 7,399.544

@ performed on a Mac Quad-core Intel Xeon, CPU 2x 2.26GHz, memory (DDR 3) 8 GB; ® for the biased model BEXW.

Constraint solver used for optimisation — enables larger size tissue to be simulated.

{david.gilbert,ovidiu.parvu}
@brunel.ac.uk

Multiscale Systems Biology

Simulation & analysis



Simple example unfoldings




Example unfolding

Guess which model these are from!
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Understanding Biological Systems

Biological Mathematical Simulation
Systems ‘ Models ‘ results
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Some ideas for multiscale analysis

* Simulate model
— many traces from different components
— multidimensional (spatial) and multiscale (levels)

* Cluster results (from simulations)

* Analyse clusters to extract features
— Behaviour (model) checking: how to generate
properties?
 Manually (by eye, or by ‘expected’ behaviour)
 Automated generation



Understanding Biological Systems

* Mathematical models allows the in-silico investigation of behaviour of biological
systems

 Simulation of the model under different perturbation (parameter setting)

4

LARGE NUMBER OF
SIMULATION RESULTS

o

AUTOMATIC ANALYSIS OF
THESE BEHAVIOURS IS
REQUIRED

Multiscale Systems Biology
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Analysis and Interpretation of Time Series
Data

Automatically identify sets of homogeneous model behaviours

i

CLUSTERING

Explicitly describe the characteristics of each cluster

1

TEMPORAL LOGIC
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Analysis & Visualisation

* Clustering
— DBScan
— Hierarchical clustering

— K-means
— SOMs

* Model checking



Primary & Secondary Data

* Primary data

Data obtained from simulating the model:
time series of concentrations

* Secondary data

Cumulative rewards: time series of
accumulated concentrations



Clustering

TIME SERIES RAW DATA

FEATURE SELECTION
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Feature Selection

PRINCIPAL COMPONENT ANALYSIS

* Principal Component Analysis (PCA) is a method to reduce data

dimensionality

 Performs a covariance
analysis between factors Ll

* Allows to reduce the number
of dimension without much

loss of information bt

104

PC 1

GDS62.softbd GSM1179 (raw)

Illl
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Density-based Clustering

DBSCAN

* Analyse the space to find areas with high density of elements
* Each high-density area is labeled as a cluster

* Well suited to detect arbitrary-shaped clusters
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Cluster Validation

Composed Density Between and Within clusters (CDBW)

* Common evaluation indexes do not work well with clusters of arbitrary
shapes (based on the concept of cluster center)

* CDBW measures the quality of clusters by considering multiple
representatives per cluster

* CDBW evaluates different characteristics:
* compactness (density within clusters)
* cohesion (changes in density distribution within clusters)
* separation (density among clusters)

{david.gilbert,ovidiu.parvu} Multiscale Systems Biology
@brunel.ac.uk Simulation & analysis

19



= EXAMPLE
' Planar Cell Polarity in Drosophil

Wing

P A— b G
Tissue (Cells)
1
2
3
4 / P1 D1 \\
Cell: (3,2)
5 Compartment (2,
P2 M D2
\ P3 D3/
Colourset = {..., {((3,2)(1,1)), ((3,2)(2,1)), ((3,2)(3,1)),......((3,2)(3,3))}, ...
{david.gilbert,ovidiu.parvu} Multiscale Systems Biology

@brunel.ac.uk Simulation & analysis 20



Multiscale Case Study

 We want to cluster and characterize the behaviour of each cell in
the tissue (a 15 x 15 hexagonal structure, for a total of 112 cells)

*The behaviour is determined by the dynamic of FFD complex in the
six external compartments
 TWO CASES:

* Wild type tissue: all the cells are “wild type”

 Mutated tissue: there is a “clone” of mutated cells at the
center of a wild type tissue



Clustering

* DBScan with Principal Component Analysis

Fz- mutant clone model:
Unbiased model: A patch of mutated cells lacking Frizzled (Fz) in a

Grid 40*40 (800 cells) wild-type background
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Model Checking

In a sentence:

*  “Formally check whether a model of a biochemical system does what we
want”

Components:
e A model
— the current description of a biochemical system of interest

* A property
— a property which we think the system should have

* A model checker
— a program to test whether the model has the property



To formally express time properties we use
a temporal logic

"l am hungry.”

"I am always hungry", "I will eventually be hungry",

"I will be hungry until | eat something”.

Linear time logics restricted to single time line.

Branching logics can reason about multiple time lines.
“There is a possibility that | will stay hungry forever.”

“There is a possibility that eventually | am no longer hungry.”

Various logics :
— Computational Tree Logic (CTL)
— Continuous Stochastic Logic (CSL)
— Linear-time Temporal Logic (LTL)

each with different expressivity.



Model Checking
Biochemical Pathways

Property

Eg, “Order of peaks is; RafP, \
MEKPP, ERKPP
, Yes/no or
Model Checker |[—

probability
Pathway Model /

Formalising

Yvetlab understanding
experiments observed
behaviour
natural model
biosystem (knowledge)

\ predicted /
model-based behaviour analysis
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Analytical vs Simulative
. anaiviat Model Checking

— Exact probabilities & prove properties

— A model state is an association of #molecules/levels to each of the species
* Proteinl has 10 molecules & Protein2 has 20 molecules

— Analytical assesses every state that the model can be in (reachable states)

— State space can grow even worse than exponentially with increasing molecules, or
even be infinite!

— Stochastic model checking with even as little as 12 molecules/levels can be
impossible with today’s technology

* Simulative:
— Instead of analysing the constructed state space, analyse simulation outputs
— Simulate the model X times and check these simulations
— Simulation run = finite path through the state space
— Can’t prove probabilities



Simulative Model Checking

* In-line: check the observations as they arrive

— Requires complex computational machinery: ‘combine’
simulator & model checker

— Good for biochemical observations
— Don’t always need to finish the experimental run

e Off-line: check the observations after all have been
generated

— Easier to implement computationally (simulate then
check)

— Need to always define when to ‘stop’ generating
observations



Simulation-based Model Checking

Property
Eg, “Order of peaks is
RafP, MEKPP, ERKPP”

"\

Time series data

Behaviour Checker

RN

Model Lab
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PLTL Language

* Behaviours to be checked against a model is expressed in temporal
logic

* Probabilistic logic called Probabilistic Linear-time Temporal Logic
(PLTL) — MC2 [Donaldson&Gilbert CMSB 2008]

* Main PLTL operators:
G (P) — P always happens
F (P) — P happens at some time
X (P) — P happens in the next time point
(P1) U (P2) — P1 happens until P2 happens
P1{ P2 }—-P1 happens from the first time P2 happens
time > € — After a time point



Qualitative to quantitative
descriptions in PLTL

Qualitative:

Protein rises then falls
P=? [ ( d(Protein) >0 ) U ( G( d(Protein)<0) )]

Semi-qualitative:
Protein rises then falls to less than 50% of peak concentration
P=? [ ( d(Protein) >0) U ( G( d(Protein) <0) A F ([Protein] < 0.5 * max[Protein] ) ) ]

Semi-quantitative:
Protein rises then falls to less than 50% of peak concentration by 60 minutes
P=? [ ( d(Protein) >0) U ( G( d(Protein)<0) A F(time =60 A Protein < 0.5 * max(Protein) ) ) ]

Quantitative:

Protein rises then falls to less than 100uMol by 60 minutes
P=? [ (d(Protein) >0) U ( G( d(Protein)<0) A F(time =60 A Protein<100))]




Continuous output

Pl F(X>5) ]

=>P =1
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Stochastic Output

Pl F(X>5) ]

=>P =4/6

. 32
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Model Checking { >
=l Primary data NIEY

Unlike in the wild-type cells, for the cells distally neighbouring to the Fz- clone the
concentration of FFD in the middle distal compartment is always lower than that of the
middle proximal compartment:

P=? [time > 0 -> G(D2 < P2)]

Moreover, the trace of D2 exhibits a peak followed by a trough, which is not true for P2:

P=?[F(d(D2) >0 A F(d(D2) <0 A F(d(D2) > 0)))]

Model-BFXFz Cell (20,11) Model-BFXFz Cell (21,26)

. 45 " 45
Wild-type @1) Distally @)
4L (23) | . . 4L (23)
35| | neighbouring a5} |
3 ] 3 mxr,\xﬁﬂ"“‘W
_ to the clone _
s 25 Sl A s
? 2 @ 2 ‘ M
1.5 gy o : 1.5(
1 1
0.5} 0.5
0 : : 0 : : :
0 200 400 600 800 100 0 200 400 600 800 1000
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Big idea — check cumulative signal!

e Cumulative signal: time-series of accumulated
concentrations of FFD (secondary data)
* Why?

- The localisation of PCP signalling at any given time point is the result of
the cumulative effect of the sum over the signalling events until that

point.
Model-BFXWt Cell (20,11) Model-BFXWt Cell (20,11)
45 ‘ ‘ ‘ ‘ 600 ‘ ‘ ‘ ‘
> CP2 o CP2
4]  cD2 1 cD2
500
3.5¢
3f 400

Cumulative Signal
)
S
=)

100+
0 200 400 600 800 1000 % 200 400 600 800 1000

Time Units Time Units

Primaryidata Secondary data



Model Checking et |1\

Secondary data 2 | M | cp2
Fz- mutant clone model

Wild type cells in the tissue (i.e. away from the clone area).
After short initial period: Always middle distal cumulative[FFD] greater than middle proximal cumulative[FFD]

P=? [time > € > G(CD2 > CP2)]

e

/]

=

(P3 | (D3

Wild type cells distally neighboring to clone in the tissue
After short initial period: Always middle distal cumulative[FFD] less than middle proximal cumulative[FFD]

P=? [time > € - G(CD2 < CP2)]

Hairs grow normally in wild-type, but disturbed in WT distally near clone, influence from the clone

Wild-type BFXFz Cell (20,11) Wild-type distally BFXFz Cell (21,26
600 ‘ ‘ ‘ ‘ neighbouring zoel ez
> CP1 800r= cpi1| | | |
500l ° 2§§ | o, to clone - CP2 -
5001 ,

CD2

N

o

o
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o
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W
o
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N
o
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w
o
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—
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o
T

w200 00 600 800  10Q0, . : » ‘ ‘ ‘ ‘
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: fualn\
Model Checking (i en]on)

Secondary data Aenles/
Fz- mutant clone model:

A relatively higher cumulative signal in the middle proximal compartment (CP2) compared
to the middle distal compartment (CD2) in those cells distally directly next to the Fz-
clone:

P=? [time > 0 > G(CD2 > CP2)]

Wild type cells in the tissue (i.e. away from the clone area).
P=?[time > € > G(CD2 > CD1 ACD1=CD3 +6§ A
CD1 >CP1 ACP1=CP3 ACP1 >CP2)]

Where € =50 and 6 =0.2 Distally neighbouring

to the clone

BFXFz Cell (20,11) BFXFz Cell (21,26)

600 600

a1
CD2 500| . (1) 4 P2
(13)
400 (2,3)
(33)

Wild-type

CD2

CP2

Cumulative Signal
w
o
o
Cumulative Signal
w
o
o

nN
o
o

100

Change (1,1) to.cpT

100

o 0 200 400 560 800 1000 _ 0 200 400 560 800 1000
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Automatic Generation of TL
Descriptions

We can use PLTLc to characterize the clusters of time series

PLTLc statements should be
 general enough to describe all the time series in a given cluster
e discriminative enough to distinguish between time series of
different clusters

The generation algorithm is based on property patterns (templates)



Automatic Generation of TL
Descriptions

* Trend: describes the trend of a time series as a sequence of direction

n u

“increase”, “steady”, “decrease”)

QU(QU (... U(@n—1U(G(Pn)))--.))

If a cluster shows different trends,
7 - - - - . - they are ordered by frequency (F, is
the most frequent, then F, and so
on) and the cluster trend is defined
by:
F,VF,VFE V..

o ] Example:
steady-increase-steady OR
steady-increase-decrease-steady

d=0Ud>0U(G(d=0)) V
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Automatic Generation of TL
Descriptions

* Time: identifies the time points when the time series changes its
direction, i.e. a set of “direction changes”

Time series with the same
trend may have slightly
different time patterns

|

We compute a set of time
intervals

10
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Automatic Generation of TL
Descriptions

* Extrema: represents the occurrence of all the local minima and maxima of
a time series

The time and value of each

extrema can slightly change
R among the time series in a
cluster

The extrema of a cluster are
defined by a sequence of time
and value intervals

{david.gilbert,ovidiu.parvu} Multiscale Systems Biology
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Automatic Generation of TL
Descriptions

* Steady state: represents the value of the time series steady state (if exists)

The value of each steady state

can slightly change among the

e - , - ' I time series in a cluster
10
8
° The steady state of a cluste, if
. ] exists, is defined by a value
interval
2}
DD 1 DIUD 2DIDD C-D‘DD 4UIUD 50:30 &000
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Automatic Generation of TL
Descriptions

PLTLc GENERATION PROCEDURE:

1.

Consider cluster C, and the set of remaining clusters —C;;
If C.and =C, have different trends, stop; otherwise, continue;

If C.and —C, have the same trend with different times, stop;
otherwise, continue;

[f C.and —C, have at least one different extrema, stop;
otherwise, continue;

If C.and —C, have different steady states, stop; otherwise, the
clusters are identical and the algorithm cannot return a valid
description.



Automatic Generation of TL
Descriptions

* The effectiveness of this algorithms is affected by:

* The cluster’s quality
* The number of “direction changes” of the time series

* The effectiveness of this algorithm is NOT affected by the number
of time series per cluster



Automatic Generation of TL
Descriptions
Evaluation

* To evaluate the PLTLc statement, we test it as a temporal logic
query over the clusters

 We use the probability P=2[@op: (Ci) hat the statement correctly
classifies the time series belonging to cluster i

*We associate to each statement a “confidence level” Conf :

_ P:‘?[(P()pr (Cl)]
I+ max j£iP=2[Qopr (Cj)]

C()I{f( ¢(;p1‘ (CI ) )

which indicates its capability to discriminate between time series of
cluster i from time series of the most similar cluster j # i.
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Results

Best clustering result (using DBScan)

Wild Type Tissue

* All the cells have the same behaviour

* The borders are effect of a biased model

{david.gilbert,ovidiu.parvu} Multiscale Systems Biology

Mutated Tissue

* The mutated clone is clearly visible

* Nearby “wild type” cells are INFLUENCED by
the mutated clone
45
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DISCOVERED PROPERTIES

PLTLc EXAMPLE:
Behaviour in the INFLUENCED CELLS
P:?[(I[FFD] >0 U(Time > 30A Time < 31 /\d[FFD] =0 A G(d[FFD] = O)))]

“The concentration of FFD increases from time zero, reaches its peak
between time 30 and 31, and then becomes steady till the end”.



Publications

 Gao, Q, F. Liu, D. Gilbert, M. Heiner, and D. Tree. 2011, September. “A
Multiscale Approach to Modelling Planar Cell Polarity in Drosophila Wing using
Hierarchically Coloured Petri nets”. In Proc. 9th International Conference on
Computational Methods in Systems Biology (CMSB 2011), 209-218: ACM
digital library.

 Gao, Q,, Liy, F., Tree, D., & Gilbert, D. (2011). Multi-Cell Modelling Using
Coloured Petri Nets Applied to Planar Cell Polarity. In Proceedings of the 2nd
International Workshop on Biological Processes & Petri Nets (Vol. 724, pp.
135-150).

* Gao, Q., Gilbert, D., Heiner, M., Liu, F., Maccagnola, D., & Tree, D. (2012).
Multiscale modelling and analysis of planar cell polarity in the drosophila
wing.

Downloads

Matlab Codes
‘ http://multiscalepn.brunel.ac.uk
Petri Net Models
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Spatial analysis

<

Distance from centre /

{david.gilbert,ovidiu.parvu}
@brunel.ac.uk

el

Distance from centre

Multiscale Systems Biology
Simulation & analysis

48



Spatial analysis cont’d

Easy to use interface in debug/interaction mode

Processed image ¥ 13 4) 18:03 2 OvidiuParvu
750

AAAAA
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Spatial analysis cont’d

Algorithm SpatialAnalysis is:

1. Load .csv file and convert values into concentrations (from real values to real values
in the interval [0, 1])

2. Read the file with the concentrations and create an image out of it where each
concentration corresponds to a pixel in the image

3. Process the image and obtain for each sector its distance from the centre, the angle
and the total area:

1.

oOuhkwnN

Change the brightness and contrast of the image, such that regions of interest
are highlighted

Filter out the noise

Threshold the image

Detect contours, approximate polygons, get convex hulls

Get distance from centre, area

Approximate angle as the angle between the closest point to the origin of the
circle and the middle points of the sides of the sector

4. Printresultsin a file

endSpatialAnalysis



Experiments

1,000 simulations run for models using both circular and
rectangular geometries with an average simulation time of
approximately 50 minutes.

Each simulation ~= 24 hours real time growth.

Fixed set of parameters was used for all simulations.

Output of each simulation analysed using our sector detection
module.



Results

| Area | o Distnce |  Angle | Sectors

Rectangular | Circular | Rectangular Circular Rectangular Circular Rectangular Circular

Mean 3% 5% 41% 39% 56° 78° 1.47 1.78

2% 2%  17%  16%  18° 25 114  1.03
eviation

Coeff. of

varance 093 062 040 041 032 032 077 058
{david.gilbert,ovidiu.parvu} Multiscale Systems Biology Basic 55
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Results cont’d

Distribution of angle(degrees)

Distribution of angle(degrees)

Rectangular
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Results cont’d

Distribution of angle(degrees)

Distribution of angle(degrees)

Rectangular
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Circular
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Frequency

Results cont’d

Distribution of area
Circular

750

| m Area|
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Results cont’d

Distribution of distance from origin Distribution of distance from origin
Circular Rectangular
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Results cont’d

Distribution of number of sectors Distribution of number of sectors
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