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Chapter 1

Introduction

Petri nets provide a formal and clear representation of systems based on their
firm mathematical foundation for the analysis of system properties. However,
standard Petri nets do not scale. So attempts to simulate systems by standard
Petri nets have been mainly restricted so far to relatively small models. They
tend to grow quickly for modeling complex systems, which makes it more difficult
to manage and understand the nets, thus increasing the risk of modeling errors.
Two known modeling concepts improving the situation are hierarchy and color.
Hierarchical structuring has been discussed a lot, while the color has gained
little attention so far. Thus, we investigate how to apply colored Petri nets
to modeling and analyzing biological systems. To do so, we not only provide
compact and readable representations of complex systems, but also do not lose
the analysis capabilities of standard Petri nets, which can still be supported by
automatic unfolding. Moreover, another attractive advantage of colored Petri
nets for a modeler is that they provide the possibility to easily increase the size
of a model consisting of many similar subnets just by adding colors.

In Snoopy, we have implemented QPN C/SPN C/CPN C prototypes for edit-
ing, and animating/simulating colored qualitative Petri nets (QPNC), colored
stochastic Petri nets (SPN C) and colored continuous Petri nets (CPN C). In
this manual, we will give relevant materials for understanding, constructing,
simulating and analyzing colored qualitative/stochastic/continuous Petri nets,
so that the user will have no difficulties in using colored Petri nets. In this
manual, we concentrate on color-specific features. For a general introduction
into Snoopy, see [HRR+08] and [RMH10].

1.1 Colored Petri nets

Colored Petri nets [GL79], [GL81], [Jen81], combine Petri nets with capabilities
of programming languages to describe data types and operations, thus provid-
ing a flexible way to create compact and parameterizable models. In colored
Petri nets, tokens are distinguished by the "color", rather than having only the
"black" one. Additionally, arc expressions, an extended version of arc weights,
specify which tokens can flow over the arcs, and guards that are in fact Boolean
expressions define additional constraints on the enabling of transitions [JKW07].

For example, Figure 1.1 gives a colored Petri net, modeling dinning philoso-
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phers. Around a round table sit some philosophers. Between each pair of
philosophers there is one folk on the table. These philosophers either think or
eat. In order to eat, they have to take the following steps: (1) take the left folk,
(2) take the right folk and then start eating, (3) put the right folk back, and (4)
put the left folk back. In the colored Petri net model, to change the number of
philosophers means to change the number of colors in the net.

thinking5

1`all()Phils

waitingPhils

eatingPhils

releasingPhils

forks

5
1`all()

Forks

take_left

take_right

put_right

put_left

x

x

x

x

x

x

x

x

left(x)

right(x)

right(x)

left(x)

Declarations:

constant int N=5;

colorset Phils=int with 1-N;

colorset Forks=int with 1-N;

variable x:Phils;

function Forks left(Phils x){x};

function Forks right(Phils x){(x%N)+1};

Figure 1.1: A colored Petri net, modeling dinning philosophers. All the decla-
rations have been given on the top side (see Section 3 for how to read them).
all() is a marking specification function, which means that all the colors in one
color set are set to the same coefficient (here it is 1).

In our implementation, QPN C is a colored extension of extended qualitative
place/transition net (extended by different kinds of arcs, e.g. inhibitor arc,
read arc, reset arc and equal arc [HRR+08]), SPN C is a colored extension
of biochemically interpreted stochastic Petri nets introduced in [GHL07] and
extended in [HLG+09] and CPN C is a colored extension of continuous Petri
nets introduced in [GHL07].

July 29, 2011 2



F. Liu and M. Heiner The Manual for QPNC/SPN C/CPN C - DRAFT -

1.2 Some notes

In Snoopy, we provide a similar editing environment for QPN C , SPN C and
CPN C ; therefore the following descriptions will equally apply to QPN C , SPN C

and CPN C , except those concerning animation, simulation and analysis, but all
these differences will be noted clearly.

1.3 Features - overview

Before exploring all features in detail in the following chapters, we give a brief
overview for the expected features here:

1.3.1 Features for modeling

• Drawing of the Petri net graph as usual.

• Rich data types for color set definition (See Section 3.1.1.):

– Simple types: dot, int, string, bool, enum, index,

– Compound types: product, union.

• User-defined functions.

• Concise specification of initial marking for larger color sets (See Section
2.4.1.).

• Rate function definition for each transition instance (only for SPN C/CPN C)
(See Section 2.4.2).

• Several extended arc types, such as inhibitor arc, read arc (often also
called test arcs), equal arc, reset arc, and modifier arc, which are popular
add-ons enhancing modeling comfort [HRR+08] (See Section 2.4.3).

• Several special transitions. Snoopy supports stochastic transitions with
freestyle rate functions as well as three deterministically timed transition
types: immediate firing, deterministic firing delay, and scheduled firing
(see [HLG+09] for details.).

• Automatically colorizing some special subnets:

– Colorizing any selected subnet,

– Colorizing twin nets,

– Colorizing T-invariants/master nets.

1.3.2 Features for animation (for QPN C/SPN C)

• The user can run animation automatically or control the animation man-
ually:

– Automatic animation,

– Single-step animation by manually choosing a binding.

July 29, 2011 3
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1.3.3 Features for simulation (for SPN C/CPN C)

• Simulation is done on an automatically unfolded Petri net.

• Show or export simulation results for colored or uncolored places/transitions
separately or together.

• Several simulation algorithms to simulate SPN C , including the Gielespie
stochastic simulation algorithm (SSA) [Gil77].

• Several simulation algorithms to simulate CPN C , including the Euler al-
gorithm, Runge-Kutta algorithm etc.

1.3.4 Other features

• Highlighting the markings, color sets, guards, and expressions.

• QPN C , SPN C and CPN C are exported to different net formalisms within
Snoopy, see Figure 1.2 (See Chapter 5 for details).

• Export QPN C and SPN C to APNN.

• Export/import beyond Snoopy, e.g., export to CPN tools(See Chapter 5
for details).

Figure 1.2: Export relationships among different net formalisms.

July 29, 2011 4



Chapter 2

Modeling

In this chapter, we will first demonstrate how to construct a colored Petri
net (QPN C/SPN C/CPN C) and consider several key modeling problems af-
terwards.

2.1 General modeling procedure - an introduc-
tory example

This section will present a general step-by-step procedure of how to construct a
QPN C/SPN C/CPN C on the basis of a standard Petri net. A simple example
will be used for the illustration of the procedure.

2.1.1 Transform a standard Petri net into a colored Petri
net

One possibility to construct a colored Petri net is the transformation of an
existing standard Petri net into aQPN C/SPN C/CPN C . The following sections
will concentrate on SPN C , but all steps can be applied to QPN C and CPN C .
We start with the following steps:

• Open a standard SPN (in our example "Copynet.spstochpn", see Fig-
ure 2.1) that should be transformed into a colored SPN C .

• Go to the menu bar, select File/Export and choose “Export to colored
stochastic Petri net" (see Figure 2.2). Define the path where you want to
save the transformed Petri net. All Petri net elements (places, transitions,
arcs) and their properties (markings, rate functions, arc weights) will we
used for the construction of the corresponding colored Petri net.

2.1.2 Define similar subnets in the Petri net

We now need to subdivide the Petri net and fold it. We proceed as follows:

5
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Figure 2.1: Open a stochastic Petri net.

Figure 2.2: Export to colored stochastic Petri net.
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• Open the transformed Petri net (shown in Figure 2.3 ). Please note that
the transformed Petri net is now opened in the QPN C/SPN C environ-
ment. The transformation of the Petri net can be recognized by the as-
signed default color set Dot to all places of the original Petri net.

• Define similar subnets contained in the Petri nets. The Petri net shown
in Figure 2.3 can obviously be divided into two subnets. Therefore, the
color set that we will assign to the Petri net consists of two colors. For
example: colorset Copy = int with 1-2. See Section 3.1.1 for how to define
color sets.

Figure 2.3: The transformed colored Petri net.

2.1.3 Define declarations

We have to declare and define the color sets, variables, constants and functions
that he wants to apply to his SPN C model. In the first step we define the
color set according to the following procedure (see also section 5.1.1 for more
information about color sets):

• Click on the tab "Colorsets" in declarations menu (left sidebar) and the
color set definition dialogue will appear (shown in Figure 2.4).

• Define name, type (choose one in the drop down list) and colors of your
color set.

• Check the syntax to proof your expressions.

For our running examples we will define the color set named "Copy" of the
type integer (int) with the colors 1 and 2 (see Figure 2.4)

In the next step we define the variables (shown in Figure 2.5) that we want to
use (see also section 5.1.2 for more information about variables). The procedure
is analogous to the definition of the color set.

July 29, 2011 7
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Figure 2.4: Define color sets.

In our running examples we define the variable "x", whose color set is "Copy"
that can be chosen in the drop down list.

If you want to add any functions and constants, proceed according to the
mentioned points (for more information about the declaration of functions and
constants see section 5.1.3 and 5.1.4)

Following the same procedure to declare constants and functions.

Figure 2.5: Declare variables.

July 29, 2011 8



F. Liu and M. Heiner The Manual for QPNC/SPN C/CPN C - DRAFT -

2.1.4 Assign color sets to places and define initial mark-
ings

Now we need do apply the defined color set to the places of the colored Petri
net.

• Open the "Edit Properties dialog" of a certain place.

• In the General tab, specify the name of a place.

• In the Marking tab, specify the color set in the "Colorset" box and edit
the initial marking in the "MarkingList" (see Figure 2.6). You can always
check the defined color sets with a click open the button "Colorset". If
you want to apply the same marking for every color of this place use the
function "all()", which means that all the colors in this color set are set to
the same coefficient (here it is 1). (See Section 2.4.1 for more details on
how to define initial markings.)

Figure 2.6: Specify initial marking.

It is also possible to edit a group of places and set their color set and marking
at once. Just selected the places you want to edit and proceed like above.

• Select a group of places.

• Click Edit|Edit selected elements, and then a dialogue to specify the prop-
erties appear, e.g. see Figure 2.7 .

July 29, 2011 9
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• In the Marking tab, specify the color set in the "Colorset" box and edit
the initial marking in the "MarkingList".

Figure 2.7: Specify inital markings for a group of places.

2.1.5 Define arc expressions

In the next step, we define the expression of every arc. (See Section for how to
write arc expressions.)

• Open the "Edit Properties dialog" of a certain arc.

• In the Expression tab, write the expression, which can be aided by the
expression assistant (Figure 2.8 ). Please note that this field should not
be empty.

In our example, we will use the arc weight separated with "‘" from the variable
x.

You can also edit multiple arcs by selecting a group of arcs and edit them
like above.

2.1.6 Define guards for transitions

The guards of a transition can be edited as follows, if they are needed (see also
section Section 3.2.3).

• Open the "Eidt Properties dialog" of a transition.

• Write the guard expression in the "Guard" tab (see Figure 2.9). You have
also the possibility to use the guard assistant to define the guard functions.

Again, you can edit multiple transitions by selecting a group of transitions.

July 29, 2011 10
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Figure 2.8: Write arc expressions.

2.1.7 Define rate functions for transitions (for SPN C/CPN C)

You can also edit the rate functions for transitions if they are needed, which
follows the following procedure. You have also the possibility to use the rate
function assistant to define the rate functions.

• Open the "Edit Properties dialog" of a transition.

• Write the rate function expression in the "Function" tab (see Figure 2.10).

See Section 2.4.2 for how to write rate functions. Rate functions are only
available for SPN C and CPN C .

For every mentioned step above exist a check of the syntax. With the help of
the check function you can find and avoid mistakes. You can find this function
in each dialogue.

After applying all the steps to our running example, we obtain the following
colored Petri net model (see Figure 2.11). We don’t need the right subnetwork
anymore, because we established this copy by assigning a color set consisting
of two colors to the left one. This Petri net is equivalent to the original Petri
net of Figure 2.1. With the help of high-level (colored) Petri nets we can easily
increase the number of copies by changing the declaration of the color set instead
of creating multiple graphical copies of one and the same subnet.

July 29, 2011 11
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Figure 2.9: Write guards.

2.2 Contructing colored Petri nets

Colored Petri nets allow a more compact and parametric representation of a
system by folding similar subnets. So it is possible to represent very concisely
systems that would have required a huge uncoloured net. In this section, we
will demonstrate how to construct basci colored Petri net components, so that
we can build the whole model based on these components.

2.2.1 Basic colored Petri net components

The key step in the design of a colored Petri net is to construct basic colored
Petri net units, through which we can obtain the whole colored Petri net model
step by step. This process is also called folding. In the following we will intro-
duce some folding ways to construct basic colored Petri net components, which
are illustrated in Figure 2.12.

Figure 2.12 (a) shows the folding of two isolated subnets with the same
structure. For this simple case, we only need to assign the color set "CS" to the
place. We write the arc expression as x, where x is a variable of the type "CS".
Thus, we get a basic colored Petri net component, illustrated on the right hand
of Figure 2.12 (a).

In Figure 2.12 (b), the net to be folded is extended by two extra arcs
from p2 (p1) to t1 (t2), respectively. To fold it, we use the same color set, and
just modify the arc expression to x+ +(+x), where the "+" in the (+x) is the
successor operator, which returns the successor of x in an ordered finite color

July 29, 2011 12
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Figure 2.10: Write rate functions.

Figure 2.11: The colored Petri net model.
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p1 p2 p2p1p CS

p1 p2

p CS

p

CS

t1 t2 t2t1t

t1 t2

t

t

x
x++

(+x)

[x=1](x++

(+x))++

[x=2]x

-->-->

-->

(a)

(c)

(b)

Declarations:

colorset CS = int with 1,2;

variable x : CS ;

(d)

Figure 2.12: Basic colored Petri net components. For all these three cases, we
define the color set as "CS" with two integer colors: 1 and 2. We use color "1" to
represent the subnet containing p1 and t1, and color "2" to represent the subnet
containing p2 and t2.

set. If x is the last color, then it returns the first color. The "++" is the multiset
addition operator.

In Figure 2.12 (c), the net to be folded gets one extra arc from p2 to t1.
To fold it, we use the same color set, and just modify the arc expression to
[x = 1](x + +(+x)) + +[x = 2]x, meaning: if x = 1, then there are two arcs
connecting p with t, while if x = 2, then there is only one arc connecting p with
t.

In summary, the following rules apply when folding two similar nets to a
colored Petri net. If the two subnets share the same structure, we just have
to define a color set and set arc expressions without predicates. If the subnets
are similar, but do not have the same structure, we may need to use guards or
arc expressions with predicates. However, in either case, if we want to continue
to add other similar nets, what we should do is usually to add new colors, and
slightly change arc expressions or guards. Using these basic colored Petri net
components, we can construct the whole colored Petri net model step by step.

2.2.2 Modeling branch and conflict reactions

In this section, we demonstrate how to construct colored models for two special
situations: a branching reaction (One reaction produces several products from
reactants.) and conflicting reactions (Several reactions use the same reactants
and produce their products independently or concurrently.) Figure 2.13 and
Figure 2.14 illustrate how to model these two situations, respectively.

Figure 2.13 shows how to fold a branching reaction into a colored component.
For this case, we define two color sets: Dot with one color dot, and CS with
two colors b and c. We then assign the color set "Dot" to the place A, and CS
to the place P . We define the expression dot for the arc from A to T and b+ +c
for the arc from T to P , which means that when T fires two tokens with colors
b and c will be added to P . Please note that the "++" is the multiset addition
operator.
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Figure 2.14 shows how to fold conflicting reactions into a colored component.
For this case, we use the same color sets. We assign the color set "Dot" to the
place A, and CS to the place P . We define the expression dot for the arc from
A to T and x for the arc from T to P , where x is a variable of the type "CS".

A

Dot

P

CS

A

B

C rr

dot b++

c

 r: A -> B + C

-->

Declarations:

colorset Dot = dot;

colorset CS=enum with b,c;

Figure 2.13: Petri net representation (on the left hand) and colored Petri net
representation (on the right hand) of a branching reaction with reactant A and
products B and C.

A

Dot

P

CS

A

B

C r

r1

r2

dot x

Declarations:

colorset Dot = dot;

colorset CS=enum with b,c;

variable x : CS;

r1: A -> B

r2: A -> C

-->

Figure 2.14: Petri net representation (on the left hand) and colored Petri net
representation (on the right hand) of two conflicting reactions with reactant A
producing B or C.

2.2.3 Modeling nets with logical nodes

In this section we will discuss how to deal with nets with logical nodes, illustrated
in Figure 2.15 to Figure 2.19.

2.3 Automatic colorizing

Now, three ways are allowed to automatically colorize selected subnets.

2.3.1 Colorizing any subset

Go to the menu bar, select Extras/Folding/Colorize and then the user can col-
orize a selected subnet. During this process, the user can set a new color set
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p11

p21 p21

p31

p32p12

p22
p22

t11 t21 t21 t41t31

t32 t42t12 t22t22

Subnet 1

Subnet 2

C1−C2

P1

1

1`all()CS

P2CS P2CS

P3

2
1`all()CS

t1 t2t2 t3

t4

 x

x x

x x

x x

x

x

x

Declarations:

colorset CS = enum with c1,c2;

variable x : CS;

C1-C2

Figure 2.15: Case 1. In this case, we fold Subnet1 and Subnet2 (on the left
hand) to a colored component (on the right hand). Each logical node has a
unique copy in each subset.

p11 p31

p32p12

p2

p2
p2

p2

t11 t2 t2

t2t2

t41t31

t32 t42t12

Subnet 1

Subnet 2
P1

2

1`all()CS

P2Dot P2Dot

P3

2

1`all()CS

t1 t2t2 t3 t4

 x

dot dot

c1++

c2

c1++

c2

dot
dot

x

dot

x

Declarations:

colorset Dot = dot;

colorset CS = enum with c1,c2;

variable x : CS;

Figure 2.16: Case 2. In this case, either the transition t2 or place p2 only have
one unique copy in both subnets.
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p11 p31 p32p12

p12_2

p32_2p31_2

p11_2

p2 p2
p2

p2

p2_2p2_2
p2_2

p2_2

t11 t2 t2 t2
t2t41t31 t32 t42t12

t12_2
t42_2t32_2t31_2 t41_2t11_2 t2_2 t2_2t2_2t2_2

Subnet 1

Subnet 2

Figure 2.17: Case 3. Each logical node has a unique copy in each subset.

P1

4

1`all()P1

P2P2 P2P2

P3

4

1`all()P1

t1
t2t2 t3 t4

(y,x)

(y,dot) (y,dot)

(y,c1)++

(y,c2)

(y,c1)++

(y,c2)

(y,dot)
(y,dot)

(y,x)

(y,dot)

(y,x)

Declarations:

colorset Dot = dot;

colorset CS = enum with c1,c2;

colorSet CT = enum with T1,T2;

colorSet P1 = product with CT,CS;

colorSet P2 = product with CT,Dot;

variable x : CS;

variable y : CT

Figure 2.18: Colored Petri net model for Figure 2.17. Each logical node has a
unique copy in each subset. Each subnet has the same structure and uses the
same color set CS.
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P3

8

1`all()CU

P2CP2P2CP2

P1
8

1`all()CU

t4t3t2 t2t1

[y=T1](y,x)++

[y=T2](y,z)

(y,dot)

[y=T1](y,x)++

[y=T2](y,z)

(y,dot)(y,dot)

[y=T1]((y,c1)++

(y,c2))++

[y=T2]((y,d1)++

(y,d2))
[y=T1]((y,c1)++

(y,c2))++

[y=T2]((y,d1)++

(y,d2))

(y,dot)(y,dot)

[y=T1](y,x)++

[y=T2](y,z)

Declarations:

colorSet Dot = dot;

colorSet CS1 = enum with c1,c2;

colorSet CS2 = enum with d1,d2;

colorSet CT = enum with T1,T2;

colorSet CP1 = product with CT,CS1;

colorSet CP2 = product with CT,Dot;

colorSet CP3 = product with CT,CS2;

colorSet CU = union with CP1,CP3;

variable x : CS1;

variable y : CT;

variable z : CS2;

Figure 2.19: Colored Petri net model for Figure 2.17. Each logical node has a
unique copy in each subset. Each subnet allows a different structure and uses
a different color set. Here Subnet 1 uses the color set CS1, and Subnet 2 uses
the color set CS2.

(for places) and variable name (for edges). After this is done, all places have
the same color set and all edges the same expression.

2.3.2 Colorizing twin nets

Go to the menu bar, select Extras/Folding/Generate twin nets and then the
user can create twin nets for a given net.

2.3.3 Modeling T-invariants

Go to the menu bar, select Extras/Folding/Generate master nets and then the
user can create a color Petri net model for the given T-invariant file. The user
then can demonstrate T-invariants on this colored net.

2.4 Some other key modeling problems

2.4.1 Specifying initial markings

We provide several ways for specifying initial markings:

• Specifying colors and their corresponding tokens as usual,

• Specifying a set of colors with the same number of tokens,
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Table 2.1: Specification of initial markings. Colorset CS = int with 1− 100.

Color/Predicate/Function marking

1 1

4,5,7 2

x > 10 3

all() 4

• Using a predicate to choose a set of colors and then specifying the same
number of tokens,

• Using the all() function to specify for all colors a specified number of
tokens.

Table 2.1 gives some examples for specifying initial markings.

2.4.2 Specifying rate functions

As there are four kinds of transitions (stochastic, immediate, deterministic and
scheduled), we have to choose a suitable kind. Then we have to define the rate
functions for the stochastic transitions, the weights for the immediate transition,
the delays for the deterministic transitions, and the periodic for the scheduled
transitions. But their specification has a similar procedure.

We start with the specification of predicates of rate functions. When writing
predicates, there are some notes you should notice:

• For a same binding, only one predicate is allowed to be evaluated to true
in the situation of more than one predicates. For example, in Table 2.2, we
have two predicates, x = 1 and x = 2. For each binding, only one of these
is evaluated to true. However, we are not allowed to write the predicates
like this, x = 1 and x ≥ 1, as these two predicates are evaluated to true
for the binding x = 1.

• If the predicates of a transition do not cover all the instances of this
transition, then the rate functions of these instances that are not covered
are set to 0. For example, if we only use a predicate x = 1, this predicate
will not cover the transition instance when x equals 2. During the syntax
checking, there is a warning in the log window like this, "15:01:12: Notice:
Transition: t1: predicates are not fully covered, where the rates are set to
0".

There are three ways for the specification of rate functions: at the colored
level or at the instance level (Here we call each unfolded transition corresponding
to a colored transition a transition instance of this colored transition.) or a
combination of both of them. For any way, we should first use predicates to
choose a or a set of transition instances and then specify rate functions.

July 29, 2011 19



F. Liu and M. Heiner The Manual for QPNC/SPN C/CPN C - DRAFT -

Table 2.2: Specifying rate functions.

# Predicate Rate function

1 true P2 ∗ P3

2 x = 1 P2 ∗ P3

x = 2 5 ∗ P2 ∗ P3

3 true P1[1] ∗ P1[2]

4 true P1[1] ∗ P1[2] ∗ P2 ∗ P3

5 x = 1 P1[1] ∗ P1[2] ∗ P2 ∗ P3

x = 2 5 ∗ P1[1] ∗ P1[2] ∗ P2 ∗ P3

(1) Specifying rate functions at the colored level

We can specify rate functions by referencing names of colored places, just like
specifying rate functions for stochastic Petri nets. For instance, in Figure 2.20
we can do it at the colored level like shown in the #1 and #2 of Table 2.2.

(2) Specifying rate functions at the instance level

We can also specify rate functions at the instance level. To do this, in a
rate function, we reference a colored place, followed by [color/variable], which
denotes the place instance by the specified "color" or "variable". For instance,
in Figure 2.20 we can do it at the instance level as shown in the #3 of Table
2.2.

In addition, we can also combine the above ways to specify rate functions,
like shown in the #4 and #5 of Table 2.2.

P1

CS

P2

CS

P3

CS

t

1++

2
x x

Declarations:

colorset CS=int with 1,2;

variable x:CS;

Figure 2.20: An example to demonstrate how to specify rate functions. The
operator ++ in the arc expression 1++2 is the multiset addition operator.
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2.4.3 Extended arc types

We support the following extended arc types, which are popular add-ons enhanc-
ing modeling comfort (see Figure 2.21 for graphical representation in Snoopy):

• inhibitor arc,

• read arc,

• equal arc,

• reset arc, and

• modifier arc.

Arc

Read Arc Inhibitor Arc

Reset Arc Equal Arc

Modifier Arc

Figure 2.21: Special arcs in Snoopy.

Figure 2.22 gives an example for demonstrating the folding involving ex-
tended arcs, which contains two cases: 1) two special arcs are the same kind,
and 2) two arcs are different kinds.

2.4.4 Consistency checks

In the rate function of a transition, only preplaces of this transition are allowed.
However sometimes we may omit some preplaces in writing rate functions for dif-
ferent reasons. Therefore, we support to automatically check unused preplaces
in rate functions, so that we can reexamine the rate funcitons. Consistency
check is a part of syntax check. The principles we consider are as follows:

• If a rate function is constant, then we only check unused preplaces con-
nected by modifier arcs,

• If a rate function contains places, then we check all unused preplaces.

The following is a consistency check result, which is taken from the Halo
model.

• 11:08:35: Warning: The rate function for r31 has unused modifier places:
SRI510
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[x=1]3`x

[x=2]5`x

[x=1]30`x++

[x=2]50`x

Declarations:

Colorset CS=int with 1,2;

Variable x:CS;

Figure 2.22: An example for demonstrating the folding involving extended arcs.
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• 11:08:35: Warning: The rate function for r32 has unused modifier places:
SRI510

• 11:08:35: Warning: The rate function for r36 has unused places: CheB

• 11:08:35: Warning: The rate function for r37 has unused places: CheB
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Chapter 3

Annotation Language

In this chapter, we will describe the annotation language developed for colored
Petri nets.

3.1 Declarations

3.1.1 Color sets

We provide two groups of data types to define color sets of colored Petri nets.
The simple types can be directly used, but the compound ones must be based
on defined color sets. The BNF form for the data type definition is given in
Appendix A.2.

• Simple types: dot, int, string, bool, enum, index,

• Compound types: product, union.

Compared with CPN tools [CPN11], we do not support the list and record
data types. The reason for not providing the record type is that the record type
can be replaced by the product type. For the list type, the reason is that we
only want to support finite color sets so as to get an unfolding Petri net from
any color Petri net. In the following, we will describe each data type in detail.

(1) dot

We define a dot data type to declare a color set "Dot" with only one black color
"dot".

(2) int

Integers are numerals without a decimal point. Here only non-negative integers
are supported.

• Declaration Syntax:

Integers seperated by "," or "-". Here some legal definitions:

– 1,2,3
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– 1-3

– 1,3,5-7

– 1-n

For example, "1,3,5-7" defines the color set that has the following colors:
"1,3,5,6,7". We can also support a constant in the integer color set definition,
for example, in the "1-n", n is a integer constant (See Section 3.1.4 for constant
declarations.).

• Operations:

– i1 + i2 addition

– i1 − i2 subtraction

– i1 ∗ i2 multiplication

– i1 / i2 division, quotient

– i1 % i2 modulus, remainder

(3) string

Strings are specified by seqences of printable ASCII characters surrounded with
double quotes.

• Declaration Syntax:

Strings separated by "," or "-". We also support regular expressions to define
string, but they will be separated by "[ ]". Here some legal definitions:

– a, b, c

– a-c

– a, c, e-g

– [a][e, f, g]

For example, a, c, e-g defines the color set that has the following colors:
a, c, e, f, g. [a][e, f, g] defines the colors: ae, af, ag.

• Operations:

– s1 + s2 concatenate the strings s1 and s2.

(4) bool

The boolean values are true and false.

• Declaration Syntax:

false, true.

• Operations:

– ! b negation of the boolean value b,

– b1 & b2 boolean conjunction, and,

– b1 | b2 boolean disjunction, inclusive or.
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(5) enum

Enumerated values are explicitly named as identifiers in the declaration.

• Declaration Syntax:

Strings separated by "," or "-". We also support regular expressions to define
enum, but they will be separated by "[ ]". Here some legal definitions:

– a, b, c

– a-c

– a, c, e-g

– [a][e, f, g]

For example, a, c, e-g defines the color set that has the following colors:
a, c, e, f, g. [a][e, f, g] defines the colors: ae, af, ag.

The color set definition for enum is like that of string. The difference is that
the initial character of an enum color is a letter or "_".

• Operations:

There are no standard operations.

(6) index

Indexed values are sequences of values composed of an identifier and an index-
specifier

• Declaration Syntax:

index id with [intexp1 - intexp2]. For example, we can define an index color
set as: colorset Philosopher with index phil[1-5].

• Operations:

There are no standard operations.

(7) product

A product color set is a tuple of previously declared color sets.

• Declaration Syntax:

Defined color sets separated by ",". For example, we can define a product
color set as: colorset Philosopher with product H2O × Level, where H2O and
Level are two previously defined color sets.

• Operations:

There are no standard operations.
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(8) union

A union color set is a disjoint union of previously declared color sets.

• Declaration Syntax:

Defined color sets separated by ",". For example, we can define a union color
set as: colorset Salad with union Fruit, Dish, where Fruit and Dish are two
previously defined color sets.

• Operations:

There are no standard operations.

3.1.2 Subsets of color sets

We can also define subsets for a defined color set in the following two ways:

• Enumerate the colors that will appear in a subset, separated by ’,’,

• Using a logic expression (predicate) to select a group of colors, see Section
3.2.3 for how to define a predicate.

For example, suppose Colorset CS = int with 1 − 10, V ariable x : CS
and then we can define a subset CS_sub for the color set CS using the logic
expression x <> 10, which selects the colors, 1-9, for the subset CS_sub.

3.1.3 Variables

A variable is an identifier whose value can be changed during the execution of
the model. They have the following characteristics:

• They are declared with a previously declared color set.

• They are bound to the variety of different values from their color set by
the simulator as it attempts to determine if a transition is enabled.

• There can be multiple bindings simultaneously active on different transi-
tions. These bindings can exist simultaneously because they have different
scopes.

• They allow arc expressions with the ability to reference different values.

Variables can be used in the following situations (Suppose Colorset CS =
int with 1− 10; V ariable x : CS):

• arc expressions, e.g., x+ 1,

• guard, e.g., x < 5,

• marking predicate definition, e.g., x < 6,

• rate function predicate definition, e.g., x < 7.
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3.1.4 Constants

A constant has a value and correponding data type or color set. For example,
we can define a constant as follows: constant n = int with 5 . Constants can be
used in the arc expressions, guards, predicates and integer color set definition.

Constants can be used in the following cases (Suppose Colorset CS =
int with 1− 10; V ariable x : CS; Constant n : CS with 5):

• arc expressions, e.g., x+ n,

• guard, e.g., x < n,

• integer colorset definition, e.g., x < n,

• marking predicate definition, e.g., x < n,

• marking definition, e.g., we can set a color having a number of n,

• rate function predicate definition, e.g., x < n.

3.1.5 Functions

We can also define functions that are used in the whole net. A user-defined
function contains the following components:

• Function name, which is an identifier,

• Parameter list, separated by ",",

• Function body, which is an expression, and

• Return type, which is the type of the return value.

When we write a function body, we can use all the defined constants and
all the operators in Table 3.1. A function body should comply with the BNF
forms in Appendix A.3. However, please be careful when using the operator ++
and make sure that this will return only one single value or empty as we at
present do not support that the user-defined function returns more than one
values (colors).

Specifically speaking, a user-defined function can be used in the following
situations:

• expressions on arcs,

• guards on transitions,

• predicates in rate functions of transitions, and

• predicates in marking definitions of places.

In Figure 1.1, we use two user-defined functions. For example,

Forks Left(Phils x) { x }.
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In this function, Forks is the type of the return value, which is an integer
color set. Left is the function name. Phils x defines the parameter of this
function. x is the function body, which returns the left folk.

Forks Left(Phils x) { (x%N) + 1 }.

This function returns the right fork. % is the modulus operator.
In Figure 6.5, we also use user-defined functions (See Table 6.1 for details.).

For example, the function Fun1 is defined as follows:

P Fun1(HbO2 x,Level y) { [y = L]1‘(x+ 1, y) + +[y = H]1‘(x, y) }.

In this function, P is the type of the return value, which is a product color
set. Fun1 is the function name. HbO2 x,Level y define two parameters of this
function, where x is of the type HbO2 and y of Level. [y = L]1‘(x+1, y)++[y =
H]1‘(x, y) is the function body, which means when y equals L it will return one
token with the color (x+1, y) and when y equals H it will return one token with
the color (x, y). See Section 3.2.2 for more details about how to read function
bodies.

3.2 Expressions

3.2.1 Operators

We support the operators summarized in Table 3.1.

Table 3.1: Operators in the annotation language.
Priority Operator Executed operation

10 +
Successor, which returns the successor of the current
color in an ordered finite color set. If the current color
is the last color, then it returns the first color.

−
Predecessor, which returns the predecessor of the current
color in an ordered finite color set. If the current color
is the first color, then it returns the last color.

@ Index extracting, which returns the index of an index color.
. Extracting a component from a product color.
! Logical not.

9 ∗, /,% Arithmetic multiplicity, division, and modulus.
8 + Arithmetic addition, or string concatenation.

− Arithmetic subtraction.
7 <,<= Less than, or less than or equal to.

>,>= Greater than, or greater than or equal to.
6 =, <> Equal, or unequal.
5 & Logical and.
4 | Logical or.
3 , Used in a tuple expression.
2 ‘ Separating the coefficiency and the color.
1 ++ Multiset addition, connecting two multiset expressions.
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3.2.2 Arc expressions

Arc expressions can be defined according to the BNF forms illustrated in Ap-
pendix A.3. Arc expressions can use all the constants, variables and user-defined
functions and all the operators in Table 3.1.

For example, in Figure 6.3 (see Table 6.1 for its declarations), we use three
different expressions: dot e.g. on the arc from transiton t1 to place O2, x e.g.
from t1 to HbO2L and x + 1 e.g. from HbO2L to t1. Among these, dot is a
constant, x is a variable and x+ 1 is an addition expression.

In Figure 6.4, we will see more complex expressions. For example, [y = L]dot
on the arc from place O2 to transition t1 means that if y equals L it will return a
token with the color dot, otherwise an empty value. In fact, y = L is a predicate
of this expression.

3.2.3 Predicates/guards

Predicates/guards are in fact boolean expressions, which should be evaluated as
boolean values. Guards are used for transitions, which decide which transition
instances exist, while predicates are used in other situations. Predicates/guards
can contain user-defined functions. Specifically speaking, we use the predicates
in the following situations:

• Subset definition of color sets, where a predicate is used to select a group
of colors to form a subset.

• Initial marking specification, where a predicate is used to select a group
of colors.

• Rate function specification, where a predicate is used to select a group of
transition instances.

• Arc expression specification, where a predicate is used to decide if the
current arc is used or not.

For example, in Figure 6.3 (see Table 6.1 for its declarations), in the expres-
sion [y = L]dot, y = L is a predicate of this expression, where when y = L is
evaluated to true, this expression will return one token dot, otherwise it will
return empty. In addition, there is a guard x <> 4 e.g. on transitions t1, which
means when this guard is evaluated to true, there exists a transition instance of
t1.
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Chapter 4

Animation, Simulation and
Analysis

In this chapter, we will demonstrate how to animate/simulate/analyze QPN C ,
SPN C and CPN C .

4.1 Animation (for QPN C and SPN C)

When the Petri net model is opened, then the user can click the View|Start
Anim-Mode to prepare animation. Before opening the animation dialogue, the
syntax will be checked automatically for this model. The user can choose auto-
matic animation or a manual one, in which case the user can select a binding.
In the following, we will in detail describe it. Figure 4.1 shows the animation
interface.

Figure 4.1: Animation interface.
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4.1.1 Automatic animation

When the user clicks the Play forward/Pause button, the automatic animation
will begin/pause. Figure 4.2 shows one animation snapshot.

Figure 4.2: One animation snapshot.

4.1.2 Manual animation

When the user just clicks the transition to fire, then the binding selection dia-
logue will appear if this transition is enabled. For example, when we click the
transition t1, we will get Figure 4.3. Then the user can select manual binding.

Figure 4.3: Manual animation snapshot.

4.2 Simulation (for SPN C and CPN C)

When the user clicks the Play forward/Pause button, and then clicks stochastic
simulation button, the simulation dialogue will appear. During this process, an
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implicit unfolding is done, which unfolds a colored Petri net to a standard Petri
net.

4.2.1 Run simulation

In the simulation dialogue (Figure 4.4 ), the user can first set simulation pa-
rameters, and then click the Start simulation button to start simulation. The
settings include:

• Setting a marking set,

• Setting a rate function/weight/delay/schedule set,

• Setting a parameter set,

• Setting a simulation run interval, output step count, and simulation run
number, and

• Choosing a simulation algorithm.

Figure 4.4: Simulation interface.

4.2.2 Show simulation results

The user can choose to show simulation results as a table or plot. Further, in
a table or plot, the user can choose which information to be shown: colored,
unfolded or both. For example, Figure 4.5 gives the plot show of colored places.

Plus, the user can eidt the table or plot to change settings of the informtion
to be shown (Figure 4.6 ).
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Figure 4.5: Plot for simulation results.

Figure 4.6: Edit plot.
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4.2.3 Export simulation results

The user can choose which information to be exported to a file: colored, unfolded
or both.

4.3 Analysis

4.3.1 Analysis using Charlie

We can export a colored Petri net to an uncolored Petri net, and then use Charlie
[Cha11], [Fra09] to analyze its properties, e.g., P invariants and T invariants, or
generate its reachability graph.

4.3.2 Analysis using Marcie

We can also export a colored stochastic Petri net to a stochastic Petri net, and
then use the Marcie tool [Mar11], [SH09] to model check it.

4.3.3 Analysis using the MC2 tool

The MC2 tool [MC210] is used to analyze simulation traces of a stochastic
model, so we can use MC2 to directly analyze simulation traces of a colored
stochastic/continuous Petri net.

4.3.4 Analysis using CPN tools

We can export a colored Petri net produced by Snoopy to another colored Petri
net readable by the CPN tools [CPN11]. So we can make use of the analysis tool
of CPN tools [CPN11], [ASAP11] to analyze colored Petri nets at the colored
level.
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Chapter 5

Export/Import

5.1 QPN C export/import

5.1.1 Export to colored extended Petri nets

For an extended Petri net, the user can export it to a colored extended Petri
net (QPN C) by defining a color set Dot. After this transformation, the new
net has the following features:

• All the places are set to the same color set, Dot.

• All the arcs are set to the same expression, dot.

5.1.2 Export to extended Petri nets

For a colored extended Petri net, the user can unfold it to an extended Petri net
just by exporting it to an extended Petri net. During this process, all isolated
nodes (places or transitions) are removed.

5.1.3 Export to colored stochastic Petri nets

For a colored extented Petri net (QPN C), the user can transform it to a colored
stochastic Petri net. All the information has been kept during this process, and
all the rate functions for the transformed SPN C are set to MassAction(1).

5.1.4 Export to CPN tools

For a colored extented Petri net (QPN C), the user can transform it to a file
read by CPN tools [CPN11]. After this transformation, sometimes we have to
modify the arc or guard expressions to let them comply with the syntax of CPN
tools. In summary, the following points should be noted:

• Modify user-defined functions in the declaration part,

• Change the syntax of predicates to the if-then-else syntax supported by
CPN tools,
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• Replace the operators of successor, predecessor etc. with user-defined
functions,

• Modify arc expressions that belong to the union type.

5.1.5 Export declarations to a CSV file

We can export declarations of a colored Petri net to a csv file, which can be
used for publication purposes or imported by other nets, i.e., when we creates
a new colored net, we can import declarations from a CSV file for this new net.

5.1.6 Import declarations from a CSV file

Before defining a new colored Petri net, we can import declarations from a CSV
file to reuse the declaration information which is defined before.

5.2 SPN C export/import

5.2.1 Export to colored stochastic Petri nets

For a stochastic Petri net, the user can export it to a colored stochastic Petri
net by defining a color set Dot. After this transformation, the new net has the
following features:

• All the places are set to the same color set, Dot.

• All the arcs are set to the same expression, dot.

5.2.2 Export to stochastic Petri nets

For a colored stochastic Petri net, the user can unfold it to a stochastic Petri net
just by exporting it to a stochastic Petri net. During this process, all isolated
nodes (places or transitions) are removed.

5.2.3 Export to colored extented Petri nets

For a colored stochastic Petri net, the user can transform it to a colored extented
Petri net. After this transformation, all the information about rate functions is
lost.

5.2.4 Export to CPN tools

For a colored extented Petri net (QPN C), the user can transform it to a file
read by CPN tools [CPN11]. After this transformation, sometimes we have to
modify the arc or guard expressions to let them comply with the syntax of CPN
tools.

5.2.5 Export declarations to a CSV file

We can export declarations of a colored Petri net to a csv file, which can be used
for publication purposes or imported by other nets, that is, when we creates a
new colored net, we can import declarations from a CSV file for this new net.
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5.2.6 Import declarations from a CSV file

Before defining a new colored Petri net, we can import declarations from a CSV
file to reuse the declaration information which is defined before.

5.3 CPN C export/import

5.3.1 Export to colored continuous Petri nets

For a continuous Petri net, the user can export it to a colored continuous Petri
net by defining a color set Dot. After this transformation, the new net has the
following features:

• All the places are set to the same color set, Dot.

• All the arcs are set to the same expression, dot.

5.3.2 Export to continuous Petri nets

For a colored continuous Petri net, the user can unfold it to a continuous Petri
net just by exporting it to a continuous Petri net. During this process, all
isolated nodes (places or transitions) are removed.

5.3.3 Export to colored stochastic Petri nets

For a colored continuous Petri net, the user can transform it to a colored stochas-
tic Petri net. After this transformation, the equations are transformed to rate
functions.

5.3.4 Export declarations to a CSV file

We can export declarations of a colored continuousPetri net to a csv file, which
can be used for publication purposes or imported by other nets, that is, when
we creates a new colored net, we can import declarations from a CSV file for
this new net.

5.3.5 Import declarations from a CSV file

Before defining a new colored Petri net, we can import declarations from a CSV
file to reuse the declaration information which is defined before.
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Chapter 6

Examples

6.1 Cooperative ligand binding

We consider an example of the binding of oxygen to the four subunits of a
hemoglobin heterotetramer. The hemoglobin heterotetramer in the high and
low affinity state binds to none, one, two, three or four oxygen molecules. Each
of the ten states is represented by a place and oxygen feeds into the transitions
that sequentially connect the respective places. The qualitative Petri net model
is illustrated in Figure 6.1 (taken from [MWW10]).

Now we begin to construct a colored Petri net model for Figure 6.1. For
this, we first partition Figure 6.1 into five subnets, each of which is embraced
by a rectangle and is defined as a color. So we can use five integers, 0-5, to
represent these five subnets. We then group similar places, which are marked
with an identical color. The places in each group (with a specific color) are
considered as a colored place. The net after partitioning and grouping is shown
in Figure 6.2.

Now we obtain for Figure 6.1 a QPN C model, illustrated in Figure 6.3,
and further a more compact QPN C model (Figure 6.4) by continuing folding
the left and right parts. From Figure 6.3, we can see that the colored Petri net
model reduces the size of the corresponding standard Petri net model. Moreover,
comparing Figure 6.3 with Figure 6.4, we can also see that we can build colored
Petri net model with different level of structural details, which is especially
helpful for modeling complex biological systems. After automatic unfolding,
these two colored models yield exactly the same Petri net model as given in
Figure 6.1, i.e., the colored models and the uncolored model are equivalent.
The declarations for these two QPN C models of the cooperative ligand binding
are given in Table 6.1.

Besides, we give another colored model (see Figure 6.5), which uses user-
defined functions and is equivalent to Figure 6.4. In this model, we define two
functions Fun1 and Fun2 to replace lengthy expressions. See Table 6.1 for
details about these two functions.

From these colored nets, we can also see that the folding operation does
reduce the size of the net description for the prize of more complicated inscrip-
tions. The graphic complexity is reduced, but the annotations of nodes and
edges creates a new challenge. This is not unexpected since a more concise
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Figure 6.1: Cooperative binding of oxygen to hemoglobin represented as a Petri
net model [MWW10]. For clarity, oxygen is represented in the form of multiple
copies (logical places) of one place.

July 29, 2011 40



F. Liu and M. Heiner The Manual for QPNC/SPN C/CPN C - DRAFT -

HbO2L_4 HbO2H_4

HbO2H_0HbO2L_0

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

HbO2H_1HbO2L_1

HbO2H_2HbO2L_2

HbO2L_3
HbO2H_3

Figure 6.2: Cooperative binding of oxygen to hemoglobin represented as a Petri
net model, which has been partitioned into subnets.
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Figure 6.3: QPN C model for the cooperative binding of oxygen to hemoglobin,
given as a standard Petri net in Figure 6.1. For declarations of color sets and
variables, see 6.1.

Table 6.1: Declarations for the QPN C models of the cooperative ligand binding.

Declarations

colorset Dot = dot;

colorset HbO2 = int with 0-4;

colorset Level = enum with H,L;

colorset P = product with HbO2 × Level;

variable x: HbO2;

variable y: Level;

Function P Fun1(HbO2 x, Level y) {[y=L]1‘(x+1,y)++[y=H]1‘(x,y)};

Function P Fun2(HbO2 x, Level y) {[y=H]1‘(x+1,y)++[y=L]1‘(x,y)};
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Figure 6.4: QPN C model for the cooperative binding of oxygen to hemoglobin,
given as a standard Petri net in Figure 6.1. For declarations of color sets and
variables, see Table 6.1.
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Figure 6.5: Another QPN C model for the cooperative binding of oxygen to
hemoglobin, which uses user-defined functions and is equivalent to Figure 6.4.
For declarations of color sets and variables, see Table 6.1.
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write-up must rely on more complex components. Therefore, it is necessary to
build a colored Petri net model at a suitable level of structural details.

6.2 Repressilator

In this section, we will demonstrate the SPN C using an example of a synthetic
circuit - the repressilator, which is an engineered synthetic system encoded on
a plasmid, and designed to exhibit oscillations [EL00]. The repressilator system
is a regulatory cycle of three genes, for example, denoted by g_a, g_b and
g_c, where each gene represses its successor, namely, g_a inhibits g_b, g_b
inhibites g_c, and g_c inhibites g_a. This negative regulation is realized by
the repressors, p_a, p_b and p_c, generated by the genes g_a, g_b and g_c
respectively [LB07].
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Figure 6.6: Stochastic Petri net model for the repressilator. The highlighted
transitions are logical transitions.
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Declarations:

colorset Gene=enum with a,b,c;

variable x:Gene;
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Figure 6.7: SPN C model of the standard Petri net given in Figure 6.6, and one
simulation run plot for the repressilator. For rate functions, see Table 6.2.

As our purpose is to demonstrate the SPN C , we only consider a relatively
simple model of the repressilator, which was built as a stochastic π-machine
in [BCP08]. Based on that model, we build a stochastic Petri net model (Fig-
ure 6.6), and further a SPN C model for the repressilator (shown on the left
hand of Figure 6.7). This colored model when unfolded yields the same uncol-
ored Petri net model in Figure 6.6.
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Table 6.2: Rate functions for the SPN C model of the repressilator.

Transition Rate function

generate 0.1 ∗ gene

block 1.0 ∗ proteine

unblock 0.0001 ∗ blocked

degrade 0.001 ∗ proteine

For the SPN C model in Figure 6.7, there are three colors, a, b, and c to
distinguish three similar components in Figure 6.6. The predecessor operator
"-" in the arc expression −x returns the predecessor of x in an ordered finite
color set. If x is the first color, then it returns the last color.

As described above, the SPN C will be automatically unfolded to a stochastic
Petri net, and can be simulated with different simulation algorithms. On the
right hand of Figure 6.7 a snapshot of a simulation run result is given. The
rate functions are given in Table 6.2 (coming from [PC07]). The SPN C model
exhibits the same behavior compared with that in [PC07].

From Figure 6.7, we can see that the SPN C model reduces the size of the
original stochastic Petri net model to one third. More importantly, when other
similar subnets have to be added, the model structure does not need to be
modified and what has to be done is only to add extra colors.

For example, we consider the generalized repressilator with an arbitrary
number n of genes in the loop that is presented in [MHE+06]. To build its
SPN C model, we just need to modify the color set as n colors, and do not need
to modify anything else. For example, Figure 6.8 gives the conceptual graph of
the generalized repressilator with n = 9 (on the left hand), and one simulation
plot (on the right hand), whose rate functions are the same as in Table 6.2.
Please note, the SPN C model for the generalized repressilator is the same as
the one for the three-gene repressilator, and the only difference is that we define
the color set as n colors rather than 3 colors. This demonstrates a big advantage
of color Petri nets, that is, to increase the colors means to increase the size of
the net.

6.3 Where to find more examples

In [GLG+11], [GLT+11], colored (both stochastic and continuous) Petri nets
have been used to describe the phenomenon of Planar Cell Polarity (PCP) sig-
naling in Drosophila wing. Two colored models (abstract and refined) has been
developed, which model a group of cells on a two-dimensional grid, correspond-
ing to a fragment of the wing tissue. Moreover each cell is partitioned into seven
virtual compartments, so these two models has a two-level hierarchy. In addi-
tion, these models involves product color sets, subsets of color sets, user-defined
functions and etc.
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Figure 6.8: Conceptual graph and one simulation run plot for the repressilator
with 9 genes.
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Appendix A

Annotation Language

A.1 Introduction to BNF

A BNF specification is a set of derivation rules, written as [BNF11]

symbol ::= expression

where:

1. symbol is a nonterminal; expression consists of one or more sequences of
symbols; more sequences are separated by the vertical bar, ′|′, indicating
a choice, the whole being a possible substitution for the symbol on the
left.

2. Symbols that never appear on a left side are terminals, which are notated
by using the single quotation marks ’ ’.

3. Symbols that appear on a left side are non-terminals.

4. ::= means "is defined as".
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A.2 BNF for the data type definition

type ::= simple_type
| compound_type

simple_type ::= type_identifier
| structured_type

type_identifier ::= unsigned_integer
| boolean
| string

unsigned_integer ::= ′int′

boolean ::= ′bool′

string ::= ′string′

structured_type ::= enumeration
| index

enumeration ::= identifier_list
identifier_list ::= identifier

| identifier_list ′,′ identifier

index ::= identifier ′[′ index_specifier ′]′

index_specifier ::= ′int′

compound_type ::= product
| union

product ::= type ′ ×′ type
| product ′ ×′ type

union ::= type
| union ′,′ type
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A.3 BNF for the annotation language

CPN_expr ::= Multiset_expr
Multiset_expr ::= Predicate_expr

| Multiset_expr MSAdditionOp Predicate_expr

MSAdditionOp ::= ′ + +′

Predicate_expr ::= Separate_expr
| ′[′ Or_expr ′]′ Separate_expr

Separate_expr ::= Tuple_expr
| Separate_expr SeparatorOp Tuple_expr

SeparatorOp ::= ′‘′

Tuple_expr ::= Or_expr
| ′(′ Comma_expr ′)′

Comma_expr ::= Tuple_expr
| Comma_expr CommaOp Tuple_expr

CommaOp ::= ′,′

Or_expr ::= And_expr
| Or_expr OrOp And_expr

OrOp ::= ′|′

And_expr ::= Equal_expr
| And_expr AndOp Equal_expr

AndOp ::= ′&′

Equal_expr ::= Relation_expr
| Equal_expr EqualOp Relation_expr

EqualOp ::= ′ =′

| ′ <>′

Relation_expr ::= Add_expr
| Relation_expr RelationOp Add_expr

RelationOp ::= ′ <′

| ′ <=′

| ′ >=′

| ′ >′
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Add_expr ::= Multiplicity_expr
| Add_expr AddOpMultiplicity_expr

AddOp ::= ′+′

| ′−′

Multiplicity_expr ::= Unary_expr
| Multiplicity_expr MultiplicityOp Unary_expr

MultiplicityOp ::= ′∗′

| ′/′

| ′%′

Unary_expr ::= Postfix_expr
| UnaryOp Postfix_expr

UnaryOp ::= ′+′

| ′−′

| ′@′

| ′!′

Postfix_expr ::= Atom_expr
| Postfix_expr ′[′ Atom_expr ′]′

| Postfix_expr DotOp Atom_expr

DotOp ::= ′.′

Atom_expr ::= Constant
| V ariable
| Function
| ′(′ CPN_expr ′)′

Constant ::= Integer
| String

V ariable ::= Identifier
Function ::= Identifier′(′ ArgumentList ′)′ ′{′Function_body′}′

ArgumentList ::= Or_expr
| ArgumentList CommaOp Or_expr

Function_body ::= Multiset_expr

Integer ::= Digit
| Integer Digit

String ::= LetterOrDigit
| String LetterOrDigit

Identifier ::= Letter
| Identifier LetterOrDigit

LetterOrDigit ::= Letter
| Digit

Digit ::= ”0− 9”

Letter ::= ”A− Za− z_”
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